Skip to main content

Instance Contour Adjustment via Structure-Driven CNN

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13667))

Included in the following conference series:

Abstract

Instance contour adjustment is desirable in image editing, which allows the contour of an instance in a photo to be either dilated or eroded via user sketching. This imposes several requirements for a favorable method in order to generate meaningful textures while preserving clear user-desired contours. Due to the ignorance of these requirements, the off-the-shelf image editing methods herein are unsuited. Therefore, we propose a specialized two-stage method. The first stage extracts the structural cues from the input image, and completes the missing structural cues for the adjusted area. The second stage is a structure-driven CNN which generates image textures following the guidance of the completed structural cues. In the structure-driven CNN, we redesign the context sampling strategy of the convolution operation and attention mechanism such that they can estimate and rank the relevance of the contexts based on the structural cues, and sample the top-ranked contexts regardless of their distribution on the image plane. Thus, the meaningfulness of image textures with clear and user-desired contours are guaranteed by the structure-driven CNN. In addition, our method does not require any semantic label as input, which thus ensures its well generalization capability. We evaluate our method against several baselines adapted from the related tasks, and the experimental results demonstrate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bowen, R.S., Chang, H., Herrmann, C., Teterwak, P., Liu, C., Zabih, R.: OcoNet: image extrapolation by object completion. In: CVPR (2021)

    Google Scholar 

  2. Guo, X., Yang, H., Huang, D.: Image inpainting via conditional texture and structure dual generation. In: ICCV (2021)

    Google Scholar 

  3. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NIPS (2017)

    Google Scholar 

  4. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44, 800–801 (2008)

    Article  Google Scholar 

  5. Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: CVPR (2018)

    Google Scholar 

  6. Liao, L., Xiao, J., Wang, Z., Lin, C.-W., Satoh, S.: Guidance and evaluation: semantic-aware image inpainting for mixed scenes. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_41

    Chapter  Google Scholar 

  7. Liao, L., Xiao, J., Wang, Z., Lin, C., Satoh, S.: Image inpainting guided by coherence priors of semantics and textures. In: CVPR (2021)

    Google Scholar 

  8. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  9. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  10. Liu, H., Jiang, B., Song, Y., Huang, W., Yang, C.: Rethinking image inpainting via a mutual encoder-decoder with feature equalizations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 725–741. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_43

    Chapter  Google Scholar 

  11. Liu, H., Wan, Z., Huang, W., Song, Y., Han, X., Liao, J.: PD-GAN: probabilistic diverse GAN for image inpainting. In: CVPR (2021)

    Google Scholar 

  12. Ntavelis, E., et al.: AIM 2020 challenge on image extreme inpainting. In: ECCVW (2020)

    Google Scholar 

  13. Peng, J., Liu, D., Xu, S., Li, H.: Generating diverse structure for image inpainting with hierarchical VQ-VAE. In: CVPR (2021)

    Google Scholar 

  14. Ren, Y., Yu, X., Zhang, R., Li, T.H., Liu, S., Li, G.: StructureFlow: image inpainting via structure-aware appearance flow. In: ICCV (2019)

    Google Scholar 

  15. Smith, J.R., Chang, S.: VisualSeek: a fully automated content-based image query system. In: ACM MM (1996)

    Google Scholar 

  16. Song, Y., Yang, C., Shen, Y., Wang, P., Huang, Q., Kuo, C.J.: SPG-Net: segmentation prediction and guidance network for image inpainting. In: BMVC (2018)

    Google Scholar 

  17. Wang, T., Ouyang, H., Chen, Q.: Image inpainting with external-internal learning and monochromic bottleneck. In: CVPR (2021)

    Google Scholar 

  18. Wang, W., Zhang, J., Niu, L., Ling, H., Yang, X., Zhang, L.: Parallel multi-resolution fusion network for image inpainting. In: ICCV (2021)

    Google Scholar 

  19. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP. 13, 600–612 (2004)

    Google Scholar 

  20. Xiong, W., et al.: Foreground-aware image inpainting. In: CVPR (2019)

    Google Scholar 

  21. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. TOG. 31, 1 (2012)

    Google Scholar 

  22. Yi, Z., Tang, Q., Azizi, S., Jang, D., Xu, Z.: Contextual residual aggregation for ultra high-resolution image inpainting. In: CVPR (2020)

    Google Scholar 

  23. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: CVPR (2018)

    Google Scholar 

  24. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV (2019)

    Google Scholar 

  25. Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network for high-quality image inpainting. In: CVPR (2019)

    Google Scholar 

  26. Zeng, Y., Lin, Z., Lu, H., Patel, V.M.: CR-FILL: generative image inpainting with auxiliary contextual reconstruction. In: ICCV (2021)

    Google Scholar 

  27. Zeng, Yu., Lin, Z., Yang, J., Zhang, J., Shechtman, E., Lu, H.: High-resolution image inpainting with iterative confidence feedback and guided upsampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 1–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_1

    Chapter  Google Scholar 

  28. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: CVPR (2017)

    Google Scholar 

  29. Zhu, L.: Thop: Pytorch-opcounter. https://github.com/Lyken17/pytorch-OpCounter

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China under Grant No. 62136001. We thank Wenbo Li for the advise and discussion for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boxin Shi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 584 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weng, S., Wei, Y., Chang, MC., Shi, B. (2022). Instance Contour Adjustment via Structure-Driven CNN. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics