Skip to main content

DeepPS2: Revisiting Photometric Stereo Using Two Differently Illuminated Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Estimating 3D surface normals through photometric stereo has been of great interest in computer vision research. Despite the success of existing traditional and deep learning-based methods, it is still challenging due to: (i) the requirement of three or more differently illuminated images, (ii) the inability to model unknown general reflectance, and (iii) the requirement of accurate 3D ground truth surface normals and known lighting information for training. In this work, we attempt to address an under-explored problem of photometric stereo using just two differently illuminated images, referred to as the PS2 problem. It is an intermediate case between a single image-based reconstruction method like Shape from Shading (SfS) and the traditional Photometric Stereo (PS), which requires three or more images. We propose an inverse rendering-based deep learning framework, called DeepPS2, that jointly performs surface normal, albedo, lighting estimation, and image relighting in a completely self-supervised manner with no requirement of ground truth data. We demonstrate how image relighting in conjunction with image reconstruction enhances the lighting estimation in a self-supervised setting (Supported by SERB IMPRINT 2 Grant).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ashisht96/DeepPS2.

  2. 2.

    The detailed layer-wise architecture can be found in our supplementary material.

References

  1. Abrams, A., Hawley, C., Pless, R.: Heliometric stereo: shape from sun position. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 357–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_26

    Chapter  Google Scholar 

  2. Ackermann, J., Langguth, F., Fuhrmann, S., Goesele, M.: Photometric stereo for outdoor webcams. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 262–269. IEEE (2012)

    Google Scholar 

  3. Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. J. Comput. Vision 35(1), 33–44 (1999)

    Article  Google Scholar 

  4. Boss, M., Jampani, V., Kim, K., Lensch, H., Kautz, J.: Two-shot spatially-varying BRDF and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2020)

    Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  6. Burley, B., Studios, W.D.A.: Physically-based shading at Disney. In: ACM SIGGRAPH, vol. 2012, pp. 1–7 (2012)

    Google Scholar 

  7. Chen, G., Han, K., Shi, B., Matsushita, Y., Wong, K.Y.K.: Self-calibrating deep photometric stereo networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8739–8747 (2019)

    Google Scholar 

  8. Chen, G., Han, K., Shi, B., Matsushita, Y., Wong, K.Y.K.: Deep photometric stereo for non-Lambertian surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 44, 129–142 (2020)

    Google Scholar 

  9. Chen, G., Han, K., Wong, K.-Y.K.: PS-FCN: a flexible learning framework for photometric stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_1

    Chapter  Google Scholar 

  10. Chen, G., Waechter, M., Shi, B., Wong, K.-Y.K., Matsushita, Y.: What is learned in deep uncalibrated photometric stereo? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 745–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_44

    Chapter  Google Scholar 

  11. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2009)

    Article  Google Scholar 

  12. Hernández, C., Vogiatzis, G., Brostow, G.J., Stenger, B., Cipolla, R.: Non-rigid photometric stereo with colored lights. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  13. Hernández, C., Vogiatzis, G., Cipolla, R.: Overcoming shadows in 3-source photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 419–426 (2010)

    Article  Google Scholar 

  14. Horn, B., Klaus, B., Horn, P.: Robot Vision. MIT Press, Cambridge (1986)

    Google Scholar 

  15. Horn, B.K.: Shape from shading: a method for obtaining the shape of a smooth opaque object from one view (1970)

    Google Scholar 

  16. Ikeda, O.: A robust shape-from-shading algorithm using two images and control of boundary conditions. In: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429), vol. 1, pp. 14–17. IEEE (2003)

    Google Scholar 

  17. Ikehata, S.: CNN-PS: CNN-based photometric stereo for general non-convex surfaces. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_1

    Chapter  Google Scholar 

  18. Ikeuchi, K., Horn, B.K.: Numerical shape from shading and occluding boundaries. Artif. Intell. 17(1–3), 141–184 (1981)

    Article  MATH  Google Scholar 

  19. Jung, J., Lee, J.Y., So Kweon, I.: One-day outdoor photometric stereo via skylight estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4521–4529 (2015)

    Google Scholar 

  20. Kaya, B., Kumar, S., Oliveira, C., Ferrari, V., Van Gool, L.: Uncalibrated neural inverse rendering for photometric stereo of general surfaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3804–3814 (2021)

    Google Scholar 

  21. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 66–75 (2017)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Kozera, R.: On shape recovery from two shading patterns. Int. J. Pattern Recogn. Artif. Intell. 6(04), 673–698 (1992)

    Article  Google Scholar 

  24. Kumar, S.: Jumping manifolds: geometry aware dense non-rigid structure from motion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5346–5355 (2019)

    Google Scholar 

  25. Kumar, S., Dai, Y., Li, H.: Monocular dense 3D reconstruction of a complex dynamic scene from two perspective frames. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4649–4657 (2017)

    Google Scholar 

  26. Kumar, S., Dai, Y., Li, H.: Superpixel soup: monocular dense 3D reconstruction of a complex dynamic scene. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1705–1717 (2019)

    Article  Google Scholar 

  27. Li, J., Robles-Kelly, A., You, S., Matsushita, Y.: Learning to minify photometric stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7568–7576 (2019)

    Google Scholar 

  28. Lichy, D., Wu, J., Sengupta, S., Jacobs, D.W.: Shape and material capture at home. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6123–6133 (2021)

    Google Scholar 

  29. Mecca, R., Durou, J.-D.: Unambiguous photometric stereo using two images. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6978, pp. 286–295. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24085-0_30

    Chapter  Google Scholar 

  30. Onn, R., Bruckstein, A.: Integrability disambiguates surface recovery in two-image photometric stereo. Int. J. Comput. Vision 5(1), 105–113 (1990)

    Article  Google Scholar 

  31. Pacanowski, R., Celis, O.S., Schlick, C., Granier, X., Poulin, P., Cuyt, A.: Rational BRDF. IEEE Trans. Visual Comput. Graphics 18(11), 1824–1835 (2012)

    Article  Google Scholar 

  32. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  33. Prados, E., Faugeras, O.: Shape from shading: a well-posed problem? In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 870–877. IEEE (2005)

    Google Scholar 

  34. Quéau, Y., Mecca, R., Durou, J.D., Descombes, X.: Photometric stereo with only two images: a theoretical study and numerical resolution. Image Vis. Comput. 57, 175–191 (2017)

    Article  Google Scholar 

  35. Rusinkiewicz, S.M.: A new change of variables for efficient BRDF representation. In: Drettakis, G., Max, N. (eds.) EGSR 1998. E, pp. 11–22. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_2

    Chapter  Google Scholar 

  36. Santo, H., Samejima, M., Sugano, Y., Shi, B., Matsushita, Y.: Deep photometric stereo network. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 501–509 (2017)

    Google Scholar 

  37. Sato, Y., Ikeuchi, K.: Reflectance analysis under solar illumination. In: Proceedings of the Workshop on Physics-Based Modeling in Computer Vision, pp. 180–187. IEEE (1995)

    Google Scholar 

  38. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  39. Shi, B., Wu, Z., Mo, Z., Duan, D., Yeung, S.K., Tan, P.: A benchmark dataset and evaluation for Non-Lambertian and uncalibrated photometric stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3707–3716 (2016)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  41. Taniai, T., Maehara, T.: Neural inverse rendering for general reflectance photometric stereo. In: International Conference on Machine Learning, pp. 4857–4866. PMLR (2018)

    Google Scholar 

  42. Taniai, T., Matsushita, Y., Sato, Y., Naemura, T.: Continuous 3D label stereo matching using local expansion moves. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2725–2739 (2017)

    Article  Google Scholar 

  43. Tiwari, A., Raman, S.: LERPS: lighting estimation and relighting for photometric stereo. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2060–2064. IEEE (2022)

    Google Scholar 

  44. Wang, X., Jian, Z., Ren, M.: Non-Lambertian photometric stereo network based on inverse reflectance model with collocated light. IEEE Trans. Image Process. 29, 6032–6042 (2020)

    Article  MATH  Google Scholar 

  45. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  46. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)

    Article  Google Scholar 

  47. Yang, J., Liu, Q., Zhang, K.: Stacked hourglass network for robust facial landmark localisation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 79–87 (2017)

    Google Scholar 

  48. Yang, J., Ohnishi, N., Sugie, N.: Two-image photometric stereo method. In: Intelligent Robots and Computer Vision XI: Biological, Neural Net, and 3D Methods, vol. 1826, pp. 452–463. SPIE (1992)

    Google Scholar 

  49. Yao, Z., Li, K., Fu, Y., Hu, H., Shi, B.: GPS-Net: graph-based photometric stereo network. Adv. Neural. Inf. Process. Syst. 33, 10306–10316 (2020)

    Google Scholar 

  50. Zheng, Q., Jia, Y., Shi, B., Jiang, X., Duan, L.Y., Kot, A.C.: SPLINE-Net: sparse photometric stereo through lighting interpolation and normal estimation networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8549–8558 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Tiwari .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2003 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiwari, A., Raman, S. (2022). DeepPS2: Revisiting Photometric Stereo Using Two Differently Illuminated Images. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics