Skip to main content

Improving Image Restoration by Revisiting Global Information Aggregation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13667))

Included in the following conference series:

Abstract

Global operations, such as global average pooling, are widely used in top-performance image restorers. They aggregate global information from input features along entire spatial dimensions but behave differently during training and inference in image restoration tasks: they are based on different regions, namely the cropped patches (from images) and the full-resolution images. This paper revisits global information aggregation and finds that the image-based features during inference have a different distribution than the patch-based features during training. This train-test inconsistency negatively impacts the performance of models, which is severely overlooked by previous works. To reduce the inconsistency and improve test-time performance, we propose a simple method called Test-time Local Converter (TLC). Our TLC converts global operations to local ones only during inference so that they aggregate features within local spatial regions rather than the entire large images. The proposed method can be applied to various global modules (e.g., normalization, channel and spatial attention) with negligible costs. Without the need for any fine-tuning, TLC improves state-of-the-art results on several image restoration tasks, including single-image motion deblurring, video deblurring, defocus deblurring, and image denoising. In particular, with TLC, our Restormer-Local improves the state-of-the-art result in single image deblurring from 32.92 dB to 33.57 dB on GoPro dataset. The code is available at https://github.com/megvii-research/tlc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abuolaim, A., Brown, M.S.: Defocus deblurring using dual-pixel data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 111–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_7

    Chapter  Google Scholar 

  2. Abuolaim, A., Delbracio, M., Kelly, D., Brown, M.S., Milanfar, P.: Learning to reduce defocus blur by realistically modeling dual-pixel data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2289–2298 (2021)

    Google Scholar 

  3. Amir, A., Church, K.W., Dar, E.: The submatrices character count problem: an efficient solution using separable values. Inf. Comput. 190(1), 100–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3155–3164 (2019)

    Google Scholar 

  5. Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12299–12310 (2021)

    Google Scholar 

  6. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. arXiv preprint arXiv:2204.04676 (2022)

  7. Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HiNet: half instance normalization network for image restoration. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2021)

    Google Scholar 

  8. Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4641–4650 (2021)

    Google Scholar 

  9. Chu, X., Chen, L., Yu, W.: NAFSSR: stereo image super-resolution using NAFNet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1239–1248 (2022)

    Google Scholar 

  10. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3848–3856 (2019)

    Google Scholar 

  11. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. GPU gems 3(39), 851–876 (2007)

    Google Scholar 

  12. Hu, J., Shen, L., Albanie, S., Sun, G., Vedaldi, A.: Gather-excite: exploiting feature context in convolutional neural networks. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  15. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  17. Lee, J., Lee, S., Cho, S., Lee, S.: Deep defocus map estimation using domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12222–12230 (2019)

    Google Scholar 

  18. Lee, J., Son, H., Rim, J., Cho, S., Lee, S.: Iterative filter adaptive network for single image defocus deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2034–2042 (2021)

    Google Scholar 

  19. Lee, N.Y.: Block-iterative Richardson-Lucy methods for image deblurring. EURASIP J. Image Video Process. 2015(1), 1–17 (2015)

    Article  Google Scholar 

  20. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing, pp. 492–505 (2018)

    Google Scholar 

  21. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 262–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_16

    Chapter  Google Scholar 

  22. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  23. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for image restoration. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  24. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 773–782 (2018)

    Google Scholar 

  25. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  26. Lyu, S., Simoncelli, E.P.: Nonlinear image representation using divisive normalization. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  27. Mou, C., Zhang, J., Wu, Z.: Dynamic attentive graph learning for image restoration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4328–4337 (2021)

    Google Scholar 

  28. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  29. Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8102–8111 (2019)

    Google Scholar 

  30. Pan, J., Bai, H., Tang, J.: Cascaded deep video deblurring using temporal sharpness prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3043–3051 (2020)

    Google Scholar 

  31. Park, D., Kang, D.U., Kim, J., Chun, S.Y.: Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 327–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_20

    Chapter  Google Scholar 

  32. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  33. Purohit, K., Suin, M., Rajagopalan, A., Boddeti, V.N.: Spatially-adaptive image restoration using distortion-guided networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2309–2319 (2021)

    Google Scholar 

  34. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11908–11915 (2020)

    Google Scholar 

  35. Ren, C., He, X., Wang, C., Zhao, Z.: Adaptive consistency prior based deep network for image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8596–8606 (2021)

    Google Scholar 

  36. Shen, Z., et al.: Human-aware motion deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5572–5581 (2019)

    Google Scholar 

  37. Shi, J., Xu, L., Jia, J.: Just noticeable defocus blur detection and estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 657–665 (2015)

    Google Scholar 

  38. Son, H., Lee, J., Cho, S., Lee, S.: Single image defocus deblurring using kernel-sharing parallel atrous convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2642–2650 (2021)

    Google Scholar 

  39. Son, H., Lee, J., Lee, J., Cho, S., Lee, S.: Recurrent video deblurring with blur-invariant motion estimation and pixel volumes. ACM Trans. Graph. (TOG) 40(5), 1–18 (2021)

    Article  Google Scholar 

  40. Suin, M., Purohit, K., Rajagopalan, A.: Spatially-attentive patch-hierarchical network for adaptive motion deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3606–3615 (2020)

    Google Scholar 

  41. Suin, M., Rajagopalan, A.: Gated spatio-temporal attention-guided video deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7802–7811 (2021)

    Google Scholar 

  42. Tian, C., Xu, Y., Zuo, W.: Image denoising using deep CNN with batch renormalization. Neural Netw. 121, 461–473 (2020)

    Article  Google Scholar 

  43. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  44. Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12270–12279 (2019)

    Google Scholar 

  45. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  46. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general U-shaped transformer for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17683–17693 (2022)

    Google Scholar 

  47. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  48. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  49. Xia, Z., Chakrabarti, A.: Identifying recurring patterns with deep neural networks for natural image denoising. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2426–2434 (2020)

    Google Scholar 

  50. Xiang, X., Wei, H., Pan, J.: Deep video deblurring using sharpness features from exemplars. IEEE Trans. Image Process. 29, 8976–8987 (2020)

    Article  MATH  Google Scholar 

  51. Yi, Q., Li, J., Dai, Q., Fang, F., Zhang, G., Zeng, T.: Structure-preserving deraining with residue channel prior guidance. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  52. Yu, T., et al.: Region normalization for image inpainting. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12733–12740 (2020)

    Google Scholar 

  53. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  54. Zamir, S.W., et al.: CycleISP: real image restoration via improved data synthesis. In: CVPR (2020)

    Google Scholar 

  55. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)

    Google Scholar 

  56. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5978–5986 (2019)

    Google Scholar 

  57. Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., Timofte, R.: Plug-and-play image restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

    Google Scholar 

  58. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3929–3938 (2017)

    Google Scholar 

  60. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  61. Zhang, K., et al.: Deblurring by realistic blurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2737–2746 (2020)

    Google Scholar 

  62. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  63. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  64. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. arXiv preprint arXiv:1903.10082 (2019)

  65. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2480–2495 (2020)

    Article  Google Scholar 

  66. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B.: Efficient spatio-temporal recurrent neural network for video deblurring. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_12

    Chapter  Google Scholar 

  67. Zhu, C., et al.: Deep recurrent neural network with multi-scale bi-directional propagation for video deblurring. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3598–3607 (2022)

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Key R &D Program of China (No. 2017YFA0700800) and Beijing Academy of Artificial Intelligence (BAAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangyu Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1947 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, X., Chen, L., Chen, C., Lu, X. (2022). Improving Image Restoration by Revisiting Global Information Aggregation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics