Abstract
To make full use of computer vision technology in stores, it is required to consider the actual needs that fit the characteristics of the retail scene. Pursuing this goal, we introduce the United Retail Datasets (Unitail), a large-scale benchmark of basic visual tasks on products that challenges algorithms for detecting, reading, and matching. With 1.8M quadrilateral-shaped instances annotated, the Unitail offers a detection dataset to align product appearance better. Furthermore, it provides a gallery-style OCR dataset containing 1454 product categories, 30k text regions, and 21k transcriptions to enable robust reading on products and motivate enhanced product matching. Besides benchmarking the datasets using various start-of-the-arts, we customize a new detector for product detection and provide a simple OCR-based matching solution that verifies its effectiveness. The Unitail and its evaluation server is publicly available at https://unitedretail.github.io.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, Y., Chen, Y., Yu, W., Wang, L., Zhang, W.: Products-10K: a large-scale product recognition dataset. CoRR abs/2008.10545 (2020). https://arxiv.org/abs/2008.10545
Cai, Y., Wen, L., Zhang, L., Du, D., Wang, W.: Rethinking object detection in retail stores. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 947–954 (2021)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. CoRR abs/2005.12872 (2020). https://arxiv.org/abs/2005.12872
Chen, F., Zhu, C., Shen, Z., Zhang, H., Savvides, M.: NCMS: towards accurate anchor free object detection through l2 norm calibration and multi-feature selection. Comput. Vis. Image Underst. 200, 103050 (2020)
Cheng, L., et al.: Weakly supervised learning with side information for noisy labeled images. CoRR abs/2008.11586 (2020). https://arxiv.org/abs/2008.11586
Chng, C.K., Chan, C.S.: Total-text: a comprehensive dataset for scene text detection and recognition. CoRR abs/1710.10400 (2017). http://arxiv.org/abs/1710.10400
Collins, J., et al.: ABO: dataset and benchmarks for real-world 3D object understanding. CoRR abs/2110.06199 (2021). https://arxiv.org/abs/2110.06199
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805
Ding, J., et al.: Object detection in aerial images: a large-scale benchmark and challenges (2021)
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: object detection with keypoint triplets. arXiv preprint arXiv:1904.08189 (2019)
Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4
Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition (2021)
Follmann, P., Böttger, T., Härtinger, P., König, R., Ulrich, M.: MVTec D2S: densely segmented supermarket dataset. CoRR abs/1804.08292 (2018). http://arxiv.org/abs/1804.08292
George, M., Floerkemeier, C.: Recognizing products: a per-exemplar multi-label image classification approach. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 440–455. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_29
George, M., Mircic, D., Sörös, G., Floerkemeier, C., Mattern, F.: Fine-grained product class recognition for assisted shopping (2015). https://doi.org/10.48550/arxiv.1510.04074. https://arxiv.org/abs/1510.04074
Georgiadis, K., et al.: Products-6K: a large-scale groceries product recognition dataset. In: The 14th PErvasive Technologies Related to Assistive Environments Conference, PETRA 2021, pp. 1–7. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3453892.3453894
Goldman, E., Herzig, R., Eisenschtat, A., Goldberger, J., Hassner, T.: Precise detection in densely packed scenes. In: Proceedings of Conference on Computer Vision Pattern Recognition (CVPR) (2019)
Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, L., Yang, Y., Deng, Y., Yu, Y.: DenseBox: unifying landmark localization with end to end object detection. arXiv preprint arXiv:1509.04874 (2015)
Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. In: Workshop on Deep Learning, NIPS (2014)
Jund, P., Abdo, N., Eitel, A., Burgard, W.: The Freiburg groceries dataset. CoRR abs/1611.05799 (2016). http://arxiv.org/abs/1611.05799
Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), ICDAR 2015, pp. 1156–1160. IEEE Computer Society, New York (2015). https://doi.org/10.1109/ICDAR.2015.7333942
Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1484–1493 (2013). https://doi.org/10.1109/ICDAR.2013.221
Kong, T., Sun, F., Liu, H., Jiang, Y., Shi, J.: FoveaBox: beyond anchor-based object detector. arXiv preprint arXiv:1904.03797 (2019)
Koubaroulis, D., Matas, J., Kittler, J.: Evaluating colour-based object recognition algorithms using the SOIL-47 database. In: in Asian Conference on Computer Vision, pp. 840–845 (2002)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955). https://doi.org/10.1002/nav.3800020109. https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
Lee, J., Park, S., Baek, J., Oh, S.J., Kim, S., Lee, H.: On recognizing texts of arbitrary shapes with 2D self-attention. CoRR abs/1910.04396 (2019). http://arxiv.org/abs/1910.04396
Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: a simple and strong baseline for irregular text recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8610–8617 (2019)
Liao, M., Wan, Z., Yao, C., Chen, K., Bai, X.: Real-time scene text detection with differentiable binarization. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11474–11481 (2020)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Y., Jin, L., Zhang, S., Zhang, S.: Detecting curve text in the wild: new dataset and new solution. CoRR abs/1712.02170 (2017). http://arxiv.org/abs/1712.02170
Merler, M., Galleguillos, C., Belongie, S.: Recognizing groceries in situ using in vitro training data. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007). https://doi.org/10.1109/CVPR.2007.383486
Ming, Q., Miao, L., Zhou, Z., Yang, X., Dong, Y.: Optimization for arbitrary-oriented object detection via representation invariance loss. IEEE Geosci. Remote Sens. Lett., 1–5 (2021). https://doi.org/10.1109/LGRS.2021.3115110
Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: BMVC - British Machine Vision Conference. BMVA, Surrey, UK, September 2012. https://doi.org/10.5244/C.26.127. https://hal.inria.fr/hal-00818183
Oucheikh, R., Pettersson, T., Löfström, T.: Product verification using OCR classification and Mondrian conformal prediction. Expert Syste. Appl. 188, 115942 (2022). https://doi.org/10.1016/j.eswa.2021.115942. https://www.sciencedirect.com/science/article/pii/S0957417421012963
Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via IBN-Net. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 484–500. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_29
Pan, X., et al.: Dynamic refinement network for oriented and densely packed object detection, pp. 1–8 (2020)
Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A.: Image transformer. CoRR abs/1802.05751 (2018). http://arxiv.org/abs/1802.05751
Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, pp. 2458–2466, May 2021. https://ojs.aaai.org/index.php/AAAI/article/view/16347
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Risnumawan, A., Shivakumara, P., Chan, C.S., Tan, C.L.: A robust arbitrary text detection system for natural scene images. Expert Syst. Appl. 41(18), 8027–8048 (2014). https://doi.org/10.1016/j.eswa.2014.07.008. https://www.sciencedirect.com/science/article/pii/S0957417414004060
Rocha, A., Hauagge, D.C., Wainer, J., Goldenstein, S.: Automatic fruit and vegetable classification from images. Comput. Electro. Agric. 70(1), 96–104 (2010). https://doi.org/10.1016/j.compag.2009.09.002. https://www.sciencedirect.com/science/article/pii/S016816990900180X
Rong, T., Zhu, Y., Cai, H., Xiong, Y.: A solution to product detection in densely packed scenes (2021)
Sheng, F., Chen, Z., Xu, B.: NRTR: a no-recurrence sequence-to-sequence model for scene text recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 781–786. IEEE (2019)
Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2298–2304 (2016)
Singh, A., Pang, G., Toh, M., Huang, J., Galuba, W., Hassner, T.: TextOCR: towards large-scale end-to-end reasoning for arbitrary-shaped scene text (2021)
Tan, M., Le, Q.V.: EfficientNetV2: smaller models and faster training. CoRR abs/2104.00298 (2021). https://arxiv.org/abs/2104.00298
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. arXiv preprint arXiv:1904.01355 (2019)
Varol, G., Kuzu, R.: Toward retail product recognition on grocery shelves. In: International Conference on Graphic and Image Processing (2015)
Wang, W., et al.: Shape robust text detection with progressive scale expansion network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9336–9345 (2019)
Wang, W., et al.: Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. In: ICCV, pp. 8439–8448 (2019)
Wei, X., Cui, Q., Yang, L., Wang, P., Liu, L.: RPC: a large-scale retail product checkout dataset. CoRR abs/1901.07249 (2019). http://arxiv.org/abs/1901.07249
Xu, Y., et al.: Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans. Pattern Anal. Mach. Intell. 4, 1452–1459 (2020)
Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection. arXiv preprint arXiv:1904.11490 (2019)
Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in natural images. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1083–1090 (2012). https://doi.org/10.1109/CVPR.2012.6247787
Yue, X., Kuang, Z., Lin, C., Sun, H., Zhang, W.: RobustScanner: dynamically enhancing positional clues for robust text recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 135–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_9
Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection (2020)
Zhu, C., Chen, F., Shen, Z., Savvides, M.: Soft anchor-point object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 91–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_6
Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Zhu, Y., Chen, J., Liang, L., Kuang, Z., Jin, L., Zhang, W.: Fourier contour embedding for arbitrary-shaped text detection. In: CVPR (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, F. et al. (2022). Unitail: Detecting, Reading, and Matching in Retail Scene. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-20071-7_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20070-0
Online ISBN: 978-3-031-20071-7
eBook Packages: Computer ScienceComputer Science (R0)