Skip to main content

MovieCuts: A New Dataset and Benchmark for Cut Type Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Understanding movies and their structural patterns is a crucial task in decoding the craft of video editing. While previous works have developed tools for general analysis, such as detecting characters or recognizing cinematography properties at the shot level, less effort has been devoted to understanding the most basic video edit, the Cut. This paper introduces the Cut type recognition task, which requires modeling multi-modal information. To ignite research in this new task, we construct a large-scale dataset called MovieCuts, which contains 173, 967 video clips labeled with ten cut types defined by professionals in the movie industry. We benchmark a set of audio-visual approaches, including some dealing with the problem’s multi-modal nature. Our best model achieves \(47.7\%\) mAP, which suggests that the task is challenging and that attaining highly accurate Cut type recognition is an open research problem. Advances in automatic Cut-type recognition can unleash new experiences in the video editing industry, such as movie analysis for education, video re-editing, virtual cinematography, machine-assisted trailer generation, machine-assisted video editing, among others. Our data and code are publicly available: https://github.com/PardoAlejo/MovieCuts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MovieClips YouTube Channel is the source of scenes in MovieCuts.

  2. 2.

    EditStock.com.

References

  1. Arijon, D.: Grammar of the Film Language. Focal Press London (1976)

    Google Scholar 

  2. Bain, M., Nagrani, A., Brown, A., Zisserman, A.: Condensed movies: story based retrieval with contextual embeddings (2020)

    Google Scholar 

  3. Benini, S., Svanera, M., Adami, N., Leonardi, R., Kovács, A.B.: Shot scale distribution in art films. Multimedia Tools Appl. 75(23), 16499–16527 (2016). https://doi.org/10.1007/s11042-016-3339-9

    Article  Google Scholar 

  4. Bojanowski, P., Bach, F., Laptev, I., Ponce, J., Schmid, C., Sivic, J.: Finding actors and actions in movies. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2280–2287 (2013)

    Google Scholar 

  5. Bordwell, D., Thompson, K., Smith, J.: Film Art: An Introduction, vol. 7. McGraw-Hill, New York (1993)

    Google Scholar 

  6. Bost, X., et al.: Remembering winter was coming. Multimedia Tools Appl. 78(24), 35373–35399 (2019). https://doi.org/10.1007/s11042-019-07969-4

    Article  Google Scholar 

  7. Bost, X., Labatut, V., Linares, G.: Serial speakers: a dataset of tv series. arXiv preprint arXiv:2002.06923 (2020)

  8. Bredin, H.: pyannote.metrics: a toolkit for reproducible evaluation, diagnostic, and error analysis of speaker diarization systems. In: Interspeech 2017, 18th Annual Conference of the International Speech Communication Association. Stockholm, Sweden (2017). http://pyannote.github.io/pyannote-metrics/

  9. Brown, A., Huh, J., Nagrani, A., Chung, J.S., Zisserman, A.: Playing a part: speaker verification at the movies. arXiv preprint arXiv:2010.15716 (2020)

  10. Burch, N.: Theory of Film Practice. Princeton University Press (2014)

    Google Scholar 

  11. Canini, L., Benini, S., Leonardi, R.: Classifying cinematographic shot types. Multimedia Tools Appl. 62(1), 51–73 (2013). https://doi.org/10.1007/s11042-011-0916-9

    Article  Google Scholar 

  12. Chen, H., Xie, W., Vedaldi, A., Zisserman, A.: Vggsound: a large-scale audio-visual dataset. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2020)

    Google Scholar 

  13. Cutting, J.E.: The evolution of pace in popular movies. Cogn. Res. Principles Implications 1(1), 1–21 (2016). https://doi.org/10.1186/s41235-016-0029-0

    Article  Google Scholar 

  14. Duchenne, O., Laptev, I., Sivic, J., Bach, F., Ponce, J.: Automatic annotation of human actions in video. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1491–1498. IEEE (2009)

    Google Scholar 

  15. Everingham, M., Sivic, J., Zisserman, A.: Hello! my name is... buffy”-automatic naming of characters in tv video. In: BMVC, vol. 2, p. 6 (2006)

    Google Scholar 

  16. Galvane, Q., Ronfard, R., Lino, C., Christie, M.: Continuity editing for 3D animation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  17. Gu, C., et al.: Ava: a video dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6047–6056 (2018)

    Google Scholar 

  18. Gygli, M.: Ridiculously fast shot boundary detection with fully convolutional neural networks. In: 2018 International Conference on Content-Based Multimedia Indexing (CBMI), pp. 1–4. IEEE (2018)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. Hesham, M., Hani, B., Fouad, N., Amer, E.: Smart trailer: automatic generation of movie trailer using only subtitles. In: 2018 First International Workshop on Deep and Representation Learning (IWDRL), pp. 26–30. IEEE (2018)

    Google Scholar 

  21. Hoai, M., Zisserman, A.: Thread-safe: towards recognizing human actions across shot boundaries. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 222–237. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_15

    Chapter  Google Scholar 

  22. Huang, Q., Liu, W., Lin, D.: Person search in videos with one portrait through visual and temporal links. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 425–441 (2018)

    Google Scholar 

  23. Huang, Q., Xiong, Y., Lin, D.: Unifying identification and context learning for person recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  24. Huang, Q., Xiong, Yu., Rao, A., Wang, J., Lin, D.: MovieNet: a holistic dataset for movie understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 709–727. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_41

    Chapter  Google Scholar 

  25. Huang, Q., Xiong, Y., Xiong, Y., Zhang, Y., Lin, D.: From trailers to storylines: an efficient way to learn from movies. arXiv preprint arXiv:1806.05341 (2018)

  26. Huang, Q., Yang, L., Huang, H., Wu, T., Lin, D.: Caption-supervised face recognition: training a state-of-the-art face model without manual annotation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 139–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_9

    Chapter  Google Scholar 

  27. Irie, G., Satou, T., Kojima, A., Yamasaki, T., Aizawa, K.: Automatic trailer generation. In: Proceedings of the 18th ACM international conference on Multimedia, pp. 839–842 (2010)

    Google Scholar 

  28. Katz, E., Klein, F.: The film encyclopedia. Collins (2005)

    Google Scholar 

  29. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  30. Kozlovic, A.K.: Anatomy of film. Kinema A J. Film Audiov. Media (2007)

    Google Scholar 

  31. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  32. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  33. Liu, X., Hu, Y., Bai, S., Ding, F., Bai, X., Torr, P.H.: Multi-shot temporal event localization: a benchmark. arXiv preprint arXiv:2012.09434 (2020)

  34. Maharaj, T., Ballas, N., Rohrbach, A., Courville, A., Pal, C.: A dataset and exploration of models for understanding video data through fill-in-the-blank question-answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6884–6893 (2017)

    Google Scholar 

  35. Murch, W.: In the Blink of an Eye, vol. 995. Silman-James Press Los Angeles (2001)

    Google Scholar 

  36. Nagrani, A., Zisserman, A.: From benedict cumberbatch to sherlock holmes: character identification in tv series without a script. arXiv preprint arXiv:1801.10442 (2018)

  37. Pardo, A., Caba, F., Alcazar, J.L., Thabet, A.K., Ghanem, B.: Learning to cut by watching movies. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6858–6868 (2021)

    Google Scholar 

  38. Pavlakos, G., Malik, J., Kanazawa, A.: Human mesh recovery from multiple shots. arXiv preprint arXiv:2012.09843 (2020)

  39. Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

  40. Rao, A., et al.: A unified framework for shot type classification based on subject centric lens. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 17–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_2

    Chapter  Google Scholar 

  41. Rao, A., et al.: A local-to-global approach to multi-modal movie scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10146–10155 (2020)

    Google Scholar 

  42. Rohrbach, A., et al.: Movie description. Int. J. Comput. Vis. 123(1), 94–120 (2017). https://doi.org/10.1007/s11263-016-0987-1

    Article  Google Scholar 

  43. Sivic, J., Everingham, M., Zisserman, A.: “Who are you?”-learning person specific classifiers from video. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1145–1152. IEEE (2009)

    Google Scholar 

  44. Smith, J.R., Joshi, D., Huet, B., Hsu, W., Cota, J.: Harnessing ai for augmenting creativity: Application to movie trailer creation. In: Proceedings of the 25th ACM international conference on Multimedia, pp. 1799–1808 (2017)

    Google Scholar 

  45. Smith, T.J., Henderson, J.M.: Edit blindness: the relationship between attention and global change blindness in dynamic scenes. J. Eye Mov. Res. 2(2) (2008)

    Google Scholar 

  46. Smith, T.J., Levin, D., Cutting, J.E.: A window on reality: perceiving edited moving images. Curr. Dir. Psychol. Sci. 21(2), 107–113 (2012)

    Article  Google Scholar 

  47. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.: MovieQA: understanding stories in movies through question-answering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  48. Thompson, R., Bowen, C.J.: Grammar of the Edit, vol. 13. Taylor & Francis (2009)

    Google Scholar 

  49. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  50. http://www.cuvideoedit.com/types-of-edits.php

  51. https://filmanalysis.yale.edu/editing/#transitions

  52. Tsivian, Y.: Cinemetrics, part of the humanities’ cyberinfrastructure (2009)

    Google Scholar 

  53. Vicol, P., Tapaswi, M., Castrejon, L., Fidler, S.: Moviegraphs: towards understanding human-centric situations from videos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  54. Wang, H.L., Cheong, L.F.: Taxonomy of directing semantics for film shot classification. IEEE Trans. Circ. Syst. Video Technol. 19(10), 1529–1542 (2009)

    Article  Google Scholar 

  55. Wang, W., Tran, D., Feiszli, M.: What makes training multi-modal classification networks hard? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12695–12705 (2020)

    Google Scholar 

  56. Wu, H.Y., Christie, M.: Analysing cinematography with embedded constrained patterns. In: WICED-Eurographics Workshop on Intelligent Cinematography and Editing (2016)

    Google Scholar 

  57. Wu, H.Y., Galvane, Q., Lino, C., Christie, M.: Analyzing elements of style in annotated film clips. In: WICED 2017-Eurographics Workshop on Intelligent Cinematography and Editing, pp. 29–35. The Eurographics Association (2017)

    Google Scholar 

  58. Wu, H.Y., Palù, F., Ranon, R., Christie, M.: Thinking like a director: film editing patterns for virtual cinematographic storytelling. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(4), 1–22 (2018)

    Google Scholar 

  59. Wu, T., Huang, Q., Liu, Z., Wang, Yu., Lin, D.: Distribution-balanced loss for multi-label classification in long-tailed datasets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 162–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_10

    Chapter  Google Scholar 

  60. Xia, J., Rao, A., Huang, Q., Xu, L., Wen, J., Lin, D.: Online multi-modal person search in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 174–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_11

    Chapter  Google Scholar 

  61. Xiong, Y., Huang, Q., Guo, L., Zhou, H., Zhou, B., Lin, D.: A graph-based framework to bridge movies and synopses. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  62. Xu, H., Zhen, Y., Zha, H.: Trailer generation via a point process-based visual attractiveness model. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research through the Visual Computing Center (VCC) funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Pardo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 11908 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pardo, A., Heilbron, F.C., Alcázar, J.L., Thabet, A., Ghanem, B. (2022). MovieCuts: A New Dataset and Benchmark for Cut Type Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics