Skip to main content

Neuromorphic Data Augmentation for Training Spiking Neural Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)


Developing neuromorphic intelligence on event-based datasets with Spiking Neural Networks (SNNs) has recently attracted much research attention. However, the limited size of event-based datasets makes SNNs prone to overfitting and unstable convergence. This issue remains unexplored by previous academic works. In an effort to minimize this generalization gap, we propose Neuromorphic Data Augmentation (NDA), a family of geometric augmentations specifically designed for event-based datasets with the goal of significantly stabilizing the SNN training and reducing the generalization gap between training and test performance. The proposed method is simple and compatible with existing SNN training pipelines. Using the proposed augmentation, for the first time, we demonstrate the feasibility of unsupervised contrastive learning for SNNs. We conduct comprehensive experiments on prevailing neuromorphic vision benchmarks and show that NDA yields substantial improvements over previous state-of-the-art results. For example, the NDA-based SNN achieves accuracy gain on CIFAR10-DVS and N-Caltech 101 by 10.1% and 13.7%, respectively. Code is available on GitHub (URL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

    In this paper, most event-based datasets we use are collected with Dynamic Vision Sensor (DVS) cameras, therefore we also term them as DVS data for simplicity.

  2. 2.

    Note that using event camera \(g(\boldsymbol{x})\) to generate DVS data is expensive and impractical during run-time. It is easier to pre-collect the DVS data with a DVS camera and, then work with the DVS data during runtime.


  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  2. Basegmez, E.: The next generation neural networks: Deep learning and spiking neural networks. In: Advanced Seminar in Technical University of Munich, pp. 1–40. Citeseer (2014)

    Google Scholar 

  3. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  4. Budvytis, I., Sauer, P., Roddick, T., Breen, K., Cipolla, R.: Large scale labelled video data augmentation for semantic segmentation in driving scenarios. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 230–237 (2017)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International conference on machine learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  7. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  8. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

  9. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  10. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  11. Deng, S., Gu, S.: Optimal conversion of conventional artificial neural networks to spiking neural networks. arXiv preprint arXiv:2103.00476 (2021)

  12. Deng, S., Li, Y., Zhang, S., Gu, S.: Temporal efficient training of spiking neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946 (2022)

  13. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  14. Diehl, P.U., Neil, D., Binas, J., Cook, M., Liu, S.C., Pfeiffer, M.: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In: 2015 International joint conference on neural networks (IJCNN), pp. 1–8. IEEE (2015)

    Google Scholar 

  15. Diehl, P.U., Zarrella, G., Cassidy, A., Pedroni, B.U., Neftci, E.: Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8. IEEE (2016)

    Google Scholar 

  16. Fang, W., et al.: Spikingjelly (2020).

  17. Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., Tian, Y.: Incorporating learnable membrane time constant to enhance learning of spiking neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2661–2671 (2021)

    Google Scholar 

  18. Gallego, G., et al.: Event-based vision: a survey. arXiv preprint arXiv:1904.08405 (2019)

  19. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  21. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)

  22. Gu, F., Sng, W., Hu, X., Yu, F.: EventDrop: data augmentation for event-based learning. arXiv preprint arXiv:2106.05836 (2021)

  23. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028 (2017)

  24. Guo, Y., Tong, X., Chen, Y., Zhang, L., Liu, X., Ma, Z., Huang, X.: RecDis-SNN: rectifying membrane potential distribution for directly training spiking neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 326–335 (2022)

    Google Scholar 

  25. Han, B., Roy, K.: Deep spiking neural network: energy efficiency through time based coding. In: European Conference on Computer Vision (2020)

    Google Scholar 

  26. Hazan, H., et al.: BindsNET: a machine learning-oriented spiking neural networks library in Python. Front. Neuroinform. 12, 89 (2018)

    Article  Google Scholar 

  27. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  29. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  30. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neural style transfer: a review. IEEE Trans. Vis. Comput. Graph. 26(11), 3365–3385 (2019)

    Article  Google Scholar 

  31. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  32. Kim, Y., Panda, P.: Revisiting batch normalization for training low-latency deep spiking neural networks from scratch. arXiv preprint arXiv:2010.01729 (2020)

  33. Kim, Y., Panda, P.: Optimizing deeper spiking neural networks for dynamic vision sensing. Neural Networks (2021)

    Google Scholar 

  34. Kugele, A., Pfeil, T., Pfeiffer, M., Chicca, E.: Efficient processing of spatio-temporal data streams with spiking neural networks. Front. Neurosci. 14, 439 (2020)

    Article  Google Scholar 

  35. Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1346–1359 (2016)

    Article  Google Scholar 

  36. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016)

    Article  Google Scholar 

  37. Li, H., Liu, H., Ji, X., Li, G., Shi, L.: CIFAR10-DVS: an event-stream dataset for object classification. Front. Neurosci. 11, 309 (2017)

    Article  Google Scholar 

  38. Li, Y., Deng, S., Dong, X., Gong, R., Gu, S.: A free lunch from ANN: towards efficient, accurate spiking neural networks calibration. arXiv preprint arXiv:2106.06984 (2021)

  39. Li, Y., Deng, S., Dong, X., Gu, S.: Converting artificial neural networks to spiking neural networks via parameter calibration. arXiv preprint arXiv:2205.10121 (2022)

  40. Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., Gu, S.: Differentiable spike: Rethinking gradient-descent for training spiking neural networks. Adv. Neural. Inf. Process. Syst. 34, 23426–23439 (2021)

    Google Scholar 

  41. Li, Y., et al.: MixMix: all you need for data-free compression are feature and data mixing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4410–4419 (2021)

    Google Scholar 

  42. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. Adv. Neural. Inf. Process. Syst. 32, 6665–6675 (2019)

    Google Scholar 

  43. Lin, Y., Ding, W., Qiang, S., Deng, L., Li, G.: ES-ImageNet: a million event-stream classification dataset for spiking neural networks. Front. Neurosci., 1546 (2021)

    Google Scholar 

  44. Liu, Q., Ruan, H., Xing, D., Tang, H., Pan, G.: Effective AER object classification using segmented probability-maximization learning in spiking neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1308–1315 (2020)

    Google Scholar 

  45. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  46. Munoz-Bulnes, J., Fernandez, C., Parra, I., Fernández-Llorca, D., Sotelo, M.A.: Deep fully convolutional networks with random data augmentation for enhanced generalization in road detection. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 366–371. IEEE (2017)

    Google Scholar 

  47. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)

    Article  Google Scholar 

  48. Ramesh, B., Yang, H., Orchard, G., Le Thi, N.A., Zhang, S., Xiang, C.: DART: distribution aware retinal transform for event-based cameras. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2767–2780 (2019)

    Google Scholar 

  49. Rathi, N., Roy, K.: DIET-SNN: direct input encoding with leakage and threshold optimization in deep spiking neural networks. arXiv preprint arXiv:2008.03658 (2020)

  50. Rathi, N., Srinivasan, G., Panda, P., Roy, K.: Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. arXiv preprint arXiv:2005.01807 (2020)

  51. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).

    Chapter  Google Scholar 

  52. Roy, K., Jaiswal, A., Panda, P.: Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607–617 (2019)

    Article  Google Scholar 

  53. Rueckauer, B., Lungu, I.A., Hu, Y., Pfeiffer, M.: Theory and tools for the conversion of analog to spiking convolutional neural networks. arXiv: Statistics/Machine Learning (1612.04052) (2016)

  54. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  55. Shrestha, S.B., Orchard, G.: SLAYER: spike layer error reassignment in time. arXiv preprint arXiv:1810.08646 (2018)

  56. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  57. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1731–1740 (2018)

    Google Scholar 

  58. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  59. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204 (2017)

  60. Viale, A., Marchisio, A., Martina, M., Masera, G., Shafique, M.: CarSNN: an efficient spiking neural network for event-based autonomous cars on the Loihi neuromorphic research processor. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE (2021)

    Google Scholar 

  61. Wikipedia: event camera – Wikipedia, the free encyclopedia. (2021)

  62. Wikipedia: shear mapping – Wikipedia, the free encyclopedia. (2021)

  63. Wu, Y., Deng, L., Li, G., Zhu, J., Shi, L.: Spatio-temporal backpropagation for training high-performance spiking neural networks. Front. Neurosci. 12, 331 (2018)

    Article  Google Scholar 

  64. Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., Shi, L.: Direct training for spiking neural networks: faster, larger, better. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1311–1318 (2019)

    Google Scholar 

  65. Wu, Z., Zhang, H., Lin, Y., Li, G., Wang, M., Tang, Y.: LIAF-NET: leaky integrate and analog fire network for lightweight and efficient spatiotemporal information processing. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  66. Yao, Z., Gholami, A., Keutzer, K., Mahoney, M.W.: PyHessian: neural networks through the lens of the Hessian. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 581–590. IEEE (2020)

    Google Scholar 

  67. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  68. Zhang, X., et al.: Diversifying sample generation for accurate data-free quantization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15658–15667 (2021)

    Google Scholar 

  69. Zheng, H., Wu, Y., Deng, L., Hu, Y., Li, G.: Going deeper with directly-trained larger spiking neural networks. arXiv preprint arXiv:2011.05280 (2020)

  70. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

  71. Zoph, B., Cubuk, E.D., Ghiasi, G., Lin, T.-Y., Shlens, J., Le, Q.V.: Learning data augmentation strategies for object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 566–583. Springer, Cham (2020).

    Chapter  Google Scholar 

Download references


This work was supported in part by C-BRIC, a JUMP center sponsored by DARPA and SRC, Google Research Scholar Award, the National Science Foundation (Grant#1947826), TII (Abu Dhabi), and the DARPA AI Exploration (AIE) program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yuhang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Kim, Y., Park, H., Geller, T., Panda, P. (2022). Neuromorphic Data Augmentation for Training Spiking Neural Networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics