Abstract
Though impressive performance has been achieved in specific visual realms (e.g. faces, dogs, and places), an omni-vision representation generalizing to many natural visual domains is highly desirable. But, existing benchmarks are biased and inefficient to evaluate the omni-vision representation—these benchmarks either only include several specific realms, or cover most realms at the expense of subsuming numerous datasets that have extensive realm overlapping. In this paper, we propose Omni-Realm Benchmark (OmniBenchmark). It includes 21 realm-wise datasets with 7,372 concepts and 1,074,346 images. Without semantic overlapping, these datasets cover most visual realms comprehensively and meanwhile efficiently. In addition, we propose a new supervised contrastive learning framework, namely Relational Contrastive learning (ReCo), for a better omni-vision representation. Beyond pulling two instances from the same concept closer—the typical supervised contrastive learning framework—ReCo also pulls two instances from the same semantic realm closer, encoding the semantic relation between concepts, facilitating omni-vision representation learning. We benchmark ReCo and other advances in omni-vision representation studies that are different in architectures (from CNNs to transformers) and in learning paradigms (from supervised learning to self-supervised learning) on OmniBenchmark. We illustrate the superior of ReCo to other supervised contrastive learning methods, and reveal multiple practical observations to facilitate future research. The code and models are available at https://zhangyuanhan-ai.github.io/OmniBenchmark.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Annotation budget also limits its realm coverage.
- 2.
We use “Omni” to emphasize the diversity of semantic realms.
- 3.
https://www.flickr.com/, All the crawled images are strictly followed the CC-BY license.
- 4.
The other 185 concepts are included in realm that are filtered in Sect. 3.3.
- 5.
In the following material, the dataset-seen-realms/dataset-unseen-realms is a set of realms. Each dataset-seen-realm/dataset-unseen-realm in it has at least 20 concepts/fewer than 20 concepts.
References
Bao, H., Dong, L., Wei, F.: BEiT: BERT pre-training of image transformers (2021)
Ben, H.: Duplicate image detection with perceptual hashing in python (2017). https://benhoyt.com/writings/duplicate-image-detection/#difference-hash-dhash
Bertinetto, L., Mueller, R., Tertikas, K., Samangooei, S., Lord, N.A.: Making better mistakes: leveraging class hierarchies with deep networks. In: CVPR, pp. 12506–12515 (2020)
Bommasani, R., et al.: On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021)
Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29
Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882 (2020)
Caron, M., et al.: Emerging properties in self-supervised vision transformers (2021)
Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, pp. 215–223 (2011)
Cui, J., Zhong, Z., Liu, S., Yu, B., Jia, J.: Parametric contrastive learning (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)
Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Dosovitskiy, A., Fischer, P., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with exemplar convolutional neural networks. TPAMI 38(9), 1734–1747 (2015)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: CVPR Workshop, pp. 178–178. IEEE (2004)
Goyal, P., Mahajan, D., Gupta, A., Misra, I.: Scaling and benchmarking self-supervised visual representation learning. In: ICCV, pp. 6391–6400 (2019)
Guo, J.N., Mao, X.L., Wei, W., Huang, H.: Intra-category aware hierarchical supervised document hashing. IEEE Trans. Knowl. Data Eng. (2022)
Guo, Y., et al.: HCSC: hierarchical contrastive selective coding. arXiv preprint arXiv:2202.00455 (2022)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners (2021)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Jia, M., et al.: Visual prompt tuning. arXiv preprint arXiv:2203.12119 (2022)
Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673 (2020)
Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29
Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: CVPR, pp. 1920–1929 (2019)
Kornblith, S., Shlens, J., Le, Q.V.: Do better ImageNet models transfer better? In: CVPR, pp. 2661–2671 (2019)
Kotar, K., Ilharco, G., Schmidt, L., Ehsani, K., Mottaghi, R.: Contrasting contrastive self-supervised representation learning models. arXiv preprint arXiv:2103.14005 (2021)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35
Li, J., Xiong, C., Hoi, S.C.: MoPro: webly supervised learning with momentum prototypes. In: ICLR (2021)
Li, J., Zhou, P., Xiong, C., Socher, R., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966 (2020)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows (2021)
Ma, X., et al.: RelViT: concept-guided vision transformer for visual relational reasoning. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=afoV8W3-IYp
Miller, G.A.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Misra, I., van der Maaten, L.: Self-supervised learning of pretext-invariant representations. In: CVPR, pp. 6707–6717 (2020)
Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: CVPR, pp. 3498–3505. IEEE (2012)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters (2017)
Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize to ImageNet? In: International Conference on Machine Learning, pp. 5389–5400. PMLR (2019)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sariyildiz, M.B., Kalantidis, Y., Larlus, D., Alahari, K.: Concept generalization in visual representation learning (2021)
Shao, J., et al.: INTERN: a new learning paradigm towards general vision. arXiv preprint arXiv:2111.08687 (2021)
Shen, Z., Savvides, M.: MEAL V2: boosting vanilla ResNet-50 to 80%+ top-1 accuracy on ImageNet without tricks (2021)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning (2016)
Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks (2020)
Pellissier Tanon, T., Weikum, G., Suchanek, F.: YAGO 4: a reason-able knowledge base. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 583–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_34
Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? (2020)
Tolstikhin, I., et al.: MLP-Mixer: an all-MLP architecture for vision (2021)
Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: ICML (2019)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
Wang, W., Zhou, T., Qi, S., Shen, J., Zhu, S.C.: Hierarchical human semantic parsing with comprehensive part-relation modeling. TPAMI 44(7), 3508–3522 (2022)
Wang, Y., et al.: Deep fuzzy tree for large-scale hierarchical visual classification. IEEE Trans. Fuzzy Syst. 28(7), 1395–1406 (2019)
Wang, Y., Wang, Z., Hu, Q., Zhou, Y., Su, H.: Hierarchical semantic risk minimization for large-scale classification. IEEE Trans. Cybern. 52(9), 9546–9558 (2022)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR, pp. 3733–3742 (2018)
Xiao, J., Ehinger, K.A., Hays, J., Torralba, A., Oliva, A.: SUN database: exploring a large collection of scene categories. IJCV 119(1), 3–22 (2016). https://doi.org/10.1007/s11263-014-0748-y
Xiao, T., Wang, X., Efros, A.A., Darrell, T.: What should not be contrastive in contrastive learning (2021)
Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: CVPR, pp. 10687–10698 (2020)
Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546 (2019)
Yang, K., Qinami, K., Fei-Fei, L., Deng, J., Russakovsky, O.: Towards fairer datasets: filtering and balancing the distribution of the people subtree in the ImageNet hierarchy. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 547–558 (2020)
Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: CVPR, pp. 5525–5533 (2016)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features (2019)
Yun, S., Oh, S.J., Heo, B., Han, D., Choe, J., Chun, S.: Re-labeling ImageNet: from single to multi-labels, from global to localized labels. arXiv preprint arXiv:2101.05022 (2021)
Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction (2021)
Zhai, X., et al.: A large-scale study of representation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867 (2019)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhang, Y., et al.: Bamboo: building mega-scale vision dataset continually with human-machine synergy. arXiv preprint arXiv:2203.07845 (2022)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. TPAMI 40(6), 1452–1464 (2018)
Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey (2021)
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vis. (IJCV) 130, 2337–2348 (2022). https://doi.org/10.1007/s11263-022-01653-1
Zoph, B., et al.: Rethinking pre-training and self-training. arXiv preprint arXiv:2006.06882 (2020)
Acknowledgement
This work is supported by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), and under the RIE2020 Industry Alignment Fund—Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Yin, Z., Shao, J., Liu, Z. (2022). Benchmarking Omni-Vision Representation Through the Lens of Visual Realms. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-20071-7_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20070-0
Online ISBN: 978-3-031-20071-7
eBook Packages: Computer ScienceComputer Science (R0)