Skip to main content

LWGNet - Learned Wirtinger Gradients for Fourier Ptychographic Phase Retrieval

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13667))

Included in the following conference series:

Abstract

Fourier Ptychographic Microscopy (FPM) is an imaging procedure that overcomes the traditional limit on Space-Bandwidth Product (SBP) of conventional microscopes through computational means. It utilizes multiple images captured using a low numerical aperture (NA) objective and enables high-resolution phase imaging through frequency domain stitching. Existing FPM reconstruction methods can be broadly categorized into two approaches: iterative optimization based methods, which are based on the physics of the forward imaging model, and data-driven methods which commonly employ a feed-forward deep learning framework. We propose a hybrid model-driven residual network that combines the knowledge of the forward imaging system with a deep data-driven network. Our proposed architecture, LWGNet, unrolls traditional Wirtinger flow optimization algorithm into a novel neural network design that enhances the gradient images through complex convolutional blocks. Unlike other conventional unrolling techniques, LWGNet uses fewer stages while performing at par or even better than existing traditional and deep learning techniques, particularly, for low-cost and low dynamic range CMOS sensors. This improvement in performance for low-bit depth and low-cost sensors has the potential to bring down the cost of FPM imaging setup significantly. Finally, we show consistently improved performance on our collected real data (We have made the code avaiable at: https://github.com/at3e/LWGNet.git).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aidukas, T., Eckert, R., Harvey, A.R., Waller, L., Konda, P.C.: Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  2. Bian, L., Suo, J., Zheng, G., Guo, K., Chen, F., Dai, Q.: Fourier ptychographic reconstruction using wirtinger flow optimization. Opt. Exp. 23(4), 4856–4866 (2015). https://doi.org/10.1364/OE.23.004856, http://www.opticsexpress.org/abstract.cfm?URI=oe-23-4-4856

  3. Bian, L., et al.: Motion-corrected Fourier ptychography. Biomed. Opt. Exp. 7(11), 4543–4553 (2016)

    Article  Google Scholar 

  4. Boominathan, L., Maniparambil, M., Gupta, H., Baburajan, R., Mitra, K.: Phase retrieval for Fourier ptychography under varying amount of measurements. arXiv preprint arXiv:1805.03593 (2018)

  5. Bostan, E., Soltanolkotabi, M., Ren, D., Waller, L.: Accelerated wirtinger flow for multiplexed Fourier ptychographic microscopy. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3823–3827. IEEE (2018)

    Google Scholar 

  6. Breslauer, D.N., Maamari, R.N., Switz, N.A., Lam, W.A., Fletcher, D.A.: Mobile phone based clinical microscopy for global health applications. PLoS ONE 4(7), e6320 (2009)

    Article  Google Scholar 

  7. Jiang, S., Guo, K., Liao, J., Zheng, G.: Solving Fourier ptychographic imaging problems via neural network modeling and tensorflow. Biomed. Opt. Exp. 9(7), 3306–3319 (2018). https://doi.org/10.1364/BOE.9.003306, http://www.osapublishing.org/boe/abstract.cfm?URI=boe-9-7-3306

  8. Kappeler, A., Ghosh, S., Holloway, J., Cossairt, O., Katsaggelos, A.: PtychNet: CNN based Fourier ptychography. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1712–1716. IEEE (2017)

    Google Scholar 

  9. Kellman, M., Bostan, E., Chen, M., Waller, L.: Data-driven design for fourier ptychographic microscopy. In: 2019 IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2019)

    Google Scholar 

  10. Kim, J., Henley, B.M., Kim, C.H., Lester, H.A., Yang, C.: Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy. Biomed. Opt. Exp. 7(8), 3097–3110 (2016)

    Article  Google Scholar 

  11. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network (2017)

    Google Scholar 

  12. Lee, K.C., Lee, K., Jung, J., Lee, S.H., Kim, D., Lee, S.A.: A smartphone-based Fourier ptychographic microscope using the display screen for illumination. ACS Phot. 8(5), 1307–1315 (2021)

    Article  Google Scholar 

  13. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  14. Nguyen, T., Xue, Y., Li, Y., Tian, L., Nehmetallah, G.: Deep learning approach for fourier ptychography microscopy. Opt. Exp. 26(20), 26470–26484 (2018). https://doi.org/10.1364/OE.26.026470,http://www.opticsexpress.org/abstract.cfm?URI=oe-26-20-26470

  15. Ou, X., Horstmeyer, R., Yang, C., Zheng, G.: Quantitative phase imaging via fourier ptychographic microscopy. Opt. Lett. 38(22), 4845–4848 (2013). https://doi.org/10.1364/OL.38.004845,http://ol.osa.org/abstract.cfm?URI=ol-38-22-4845

  16. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  17. Dee, F.R., Leaven, T.: Department of Pathology: Iowa Virtual Slidebox, http://www.path.uiowa.edu/virtualslidebox/

  18. Smith, Z., et al.: Cell-phone-based platform for biomedical device development and education applications. PloS one 6(3), e17150 (2011)

    Article  Google Scholar 

  19. Song, P., Jiang, S., Zhang, H., Huang, X., Zhang, Y., Zheng, G.: Full-field Fourier ptychography (Ffp): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photon. 4(5), 050802 (2019)

    Article  Google Scholar 

  20. Tian, L., Li, X., Ramchandran, K., Waller, L.: Multiplexed coded illumination for Fourier ptychography with an led array microscope. Biomed. Opt. Exp. 5(7), 2376–2389 (2014). https://doi.org/10.1364/BOE.5.002376,http://www.osapublishing.org/boe/abstract.cfm?URI=boe-5-7-2376

  21. Tian, L., Liu, Z., Yeh, L.H., Chen, M., Zhong, J., Waller, L.: Computational illumination for high-speed in vitro fourier ptychographic microscopy. Optica 2(10), 904–911 (2015). http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-10-904, https://www.laurawaller.com/opensource/

  22. Trabelsi, C., et al.: Deep complex networks. In: ICLR (2018)

    Google Scholar 

  23. Zheng, G., Horstmeyer, R., Yang, C.: Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon. 7(9), 739–745 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the funding from DST IMPRINT-2 (IMP/2018/001168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atreyee Saha .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7597 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saha, A., Khan, S.S., Sehrawat, S., Prabhu, S.S., Bhattacharya, S., Mitra, K. (2022). LWGNet - Learned Wirtinger Gradients for Fourier Ptychographic Phase Retrieval. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics