Skip to main content

Tomography of Turbulence Strength Based on Scintillation Imaging

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13667))

Included in the following conference series:

  • 2316 Accesses

Abstract

Developed areas have plenty of artificial light sources. As the stars, they appear to twinkle, i.e., scintillate. This effect is caused by random turbulence. We leverage this phenomenon in order to reconstruct the spatial distribution of the turbulence strength (TS). Sensing is passive, using a multi-view camera setup in a city scale. The cameras sense the scintillation of light sources in the scene. The scintillation signal has a linear model of a line integral over the field of TS. Thus, the TS is recovered by linear tomography analysis. Scintillation offers measurements and TS recovery, which are more informative than tomography based on angle-of-arrival (projection distortion) statistics. We present the background and theory of the method. Then, we describe a large field experiment to demonstrate this idea, using distributed imagers. As far as we know, this work is the first to propose reconstruction of a TS horizontal field, using passive optical scintillation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that tomography to sense properties of atmospheric scatterers is non-linear in the unknowns [21, 22, 30, 35].

  2. 2.

    From the illustration, despite beam spread caused by turbulence, if the camera lens is large enough, the lens gathers the light power as in non-turbulent air. This inhibits the scintillation signal, and termed aperture filtering. In practice, the aperture filters scintillation if \(D>5\) cm. In our work, this is negligible because \(D<5\) cm.

References

  1. Afanasiev, A.L., Banakh, V.A., Rostov, A.P.: Crosswind measurements from image flutter of remote objects. In: International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, vol. 9292, p. 929237 (2014)

    Google Scholar 

  2. Aides, A., Schechner, Y.Y., Holodovsky, V., Garay, M.J., Davis, A.B.: Multi sky-view 3D aerosol distribution recovery. Opt. Express (2013)

    Google Scholar 

  3. Alterman, M., Schechner, Y.Y., Vo, M., Narasimhan, S.G.: Passive tomography of turbulence strength. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 47–60. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_4

    Chapter  Google Scholar 

  4. Amanatides, J., Woo., A.: A fast voxel traversal algorithm for ray tracing. Eurographics 87(3), 3–10 (1987)

    Google Scholar 

  5. Andrews, L.C., Phillips, R.L., Young, C.Y.: Laser beam scintillation with applications. In: Laser Beam Scintillation with Applications, chap. 3. SPIE (2009)

    Google Scholar 

  6. Campbell, M.: Atmospheric turbulence and its influence on adaptive optics (2009)

    Google Scholar 

  7. Dravins, D., Lindegren, L., Mezey, E., Young, A.T.: Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength. Publ. Astron. Soc. Pac. 109, 725 (1997)

    Google Scholar 

  8. Dravins, D., Lindegren, L., Mezey, E., Young, A.T.: Atmospheric intensity scintillation of stars, I. Statistical distributions and temporal properties. Publ. Astron. Soc. Pac. 109, 173 (1997)

    Google Scholar 

  9. Dravins, D., Lindegren, L., Mezey, E., Young, A.T.: Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures: erratum. Publ. Astron. Soc. Pac. 110(751) (1998)

    Google Scholar 

  10. Fedorovich, E., Rotunno, R., Stevens, B.: Atmospheric Turbulence and Mesoscale Meteorology. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  11. Hansen, P.C., Saxild-Hansen, M.: AIR tools MATLAB package of algebraic iterative reconstruction methods. J. Comput. Appl. Math. (2012)

    Google Scholar 

  12. He, R., Wang, Z., Fan, Y., Fengg, D.: Atmospheric turbulence mitigation based on turbulence extraction. In: IEEE ICASSP (2016)

    Google Scholar 

  13. Holtslag, A.A.: Atmospheric turbulence. In: Meyers, R.A. (ed.) Encyclopedia of Physical Science and Technology, 3rd edn, vol. 11. Academic Press, New York (2003)

    Google Scholar 

  14. Inc., W.R.: Wolfram Alpha. https://www.wolframalpha.com/. Accessed Mar 2022

  15. Johnston, R.A., Wooder, N.J., Reavell, F.C., Bernhardt, M., Dainty, C.: Horizontal scintillation detection and ranging Cn2(z) estimation. Appl. Opt. 42 (2003)

    Google Scholar 

  16. Karypidou, S., Georgousis, I., Papakostas, G.A.: Computer vision for astronomical image analysis. In: IEEE PIC (2021)

    Google Scholar 

  17. Klee, A., Thurman, S.T., Alley, T.: Digital holographic tomography for path-resolved turbulence measurements. In: Dolne, J.J., Spencer, M.F. (eds.) Unconventional Imaging and Adaptive Optics 2021. SPIE (2021)

    Google Scholar 

  18. Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. In: Dokl. Akad. Nauk SSSR, vol. 32, pp. 16–18 (1941)

    Google Scholar 

  19. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. In: Dokl. Akad. Nauk SSSR (1941)

    Google Scholar 

  20. Kopeika, N.: A System Engineering Approach to Imaging. SPIE Press (1998)

    Google Scholar 

  21. Levis, A., Davis, A.B., Loveridge, J.R., Schechner, Y.Y.: 3D cloud tomography and droplet size retrieval from multi-angle polarimetric imaging of scattered sunlight from above. In: Polarization Science and Remote Sensing X. SPIE (2021)

    Google Scholar 

  22. Loeub, T., Levis, A., Holodovsky, V., Schechner, Y.Y.: Monotonicity prior for cloud tomography. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 283–299. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_17

    Chapter  Google Scholar 

  23. McKechnie, T.S.: General Theory of Light Propagation and Imaging Through the Atmosphere. Springer Series in Optical Sciences, vol. 196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18209-4

    Book  MATH  Google Scholar 

  24. Meijninger, W.M.L.: Surface fluxes over natural landscapes using scintillometry. Ph.D. thesis, Wageningen University (2003)

    Google Scholar 

  25. Nair, N.G., Patel, V.M.: Confidence guided network for atmospheric turbulence mitigation. In: IEEE ICIP (2021)

    Google Scholar 

  26. Oberlack, M., Peinke, J., Talamelli, A., Castillo, L., Hölling, M.: Progress in turbulence wind energy IV. In: Proceedings of iTi Conference in Turbulence (2010)

    Google Scholar 

  27. Osborn, J., et al.: Optical turbulence profiling with stereo-SCIDAR for VLT and ELT. MNRAS 478(1), 825–834 (2018)

    Article  Google Scholar 

  28. Porat, O., Shapira, J.: Crosswind sensing from optical-turbulence-induced fluctuations measured by a video camera. Appl. Opt. 49(28), 5236–5244 (2010)

    Article  Google Scholar 

  29. Rino, C.: The Theory of Scintillation with Applications in Remote Sensing. Wiley, Hoboken(2011)

    Google Scholar 

  30. Ronen, R., Schechner, Y.Y., Eytan, E.: 4D cloud scattering tomography. In: Proceedings of ICCV (2021)

    Google Scholar 

  31. Sasiela, R.J.: Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms, 2nd edn. SPIE Press (2007)

    Google Scholar 

  32. Sauvage, C., et al.: Near ground horizontal high rresolution Cn2 profiling from shack-Hartmann slope and scintillation data. Appl. Opt. 60 (2021)

    Google Scholar 

  33. Schroeder, D.J.: Adaptive optics: an introduction. In: Astronomical Optics, chap. 16, pp. 409–424. Elsevier (2000)

    Google Scholar 

  34. Schwartzman, A., Alterman, M., Zamir, R., Schechner, Y.Y.: Turbulence-Induced 2D Correlated Image Distortion. In: IEEE ICCP, pp. 1–13 (2017)

    Google Scholar 

  35. Sde-Chen, Y., Schechner, Y.Y., Holodovsky, V., Eytan, E.: 3DeepCT: learning volumetric scattering tomography of clouds. In: Proceedings of ICCV (2021)

    Google Scholar 

  36. Sheinin, M., Schechner, Y.Y., Kutulakos, K.N.: Computational imaging on the electric grid. In: Proceedings of IEEE CVPR (2017)

    Google Scholar 

  37. Shepherd, H.W., et al.: Stereo-SCIDAR: optical turbulence profiling with high sensitivity using a modified SCIDAR instrument. MNRAS 437(4) (2014)

    Google Scholar 

  38. Smith, F.G.: The Infrared & Electro-Optical Systems Handbook: Volume 2 Atmospheric Propagation of Radiation, vol. 2. Infrared Information and Analysis Center, Ann Arbor, MI (1993)

    Google Scholar 

  39. Storer, L.N., Williams, P.D., Gill, P.G.: Aviation turbulence: dynamics, forecasting, and response to climate change. Pure Appl. Geophys. (2019)

    Google Scholar 

  40. Thomas, H.E., Prata, A.J.: Computer vision for improved estimates of SO 2 emission rates and plume dynamics. IJRS (2018)

    Google Scholar 

  41. Tian, Y., Narasimhan, S., Vannevel, A.: Depth from optical turbulence. In: Proceedings of IEEE CVPR (2012)

    Google Scholar 

  42. Toselli, I., Gladysz, S., Filimonov, G.: Scintillation analysis of LIDAR systems operating in weak-to-strong non-kolmogorov turbulence: unresolved target case. JARS 12(04), 1 (2018)

    Google Scholar 

  43. Venet, B.P.: Optical scintillometry over a long elevated horizontal path. Airborne Laser Adv. Technol. 3381(September 1998) (1998)

    Google Scholar 

  44. Vorontsov, A.M., Vorontsov, M.A., Filimonov, G.A., Polnau, E.: Atmospheric turbulence study with deep machine learning of intensity scintillation patterns. Appl. Sci. (2020)

    Google Scholar 

  45. Ward, H.C.: Scintillometry in urban and complex environments: a review. Meas. Sci. Technol. (2017)

    Google Scholar 

  46. Wilcox, C.C., Santiago, F., Martinez, T., Judd, K.P., Restaino, S.R.: Horizontal atmospheric turbulence, beam propagation, and modeling. In: Micro-and Nanotechnology Sensors, Systems, and Applications IX (2017)

    Google Scholar 

  47. Wu, C., et al.: Near ground surface turbulence measurements and validation: a comparison between different systems. In: Laser Communication and Propagation through the Atmosphere and Oceans VII. SPIE (2018)

    Google Scholar 

  48. Wu, C., et al.: Using turbulence scintillation to assist object ranging from a single camera viewpoint. Appl. Opt. 57(9), 2177 (2018)

    Article  Google Scholar 

  49. Yasarla, R., Patel, V.M.: Learning to restore images degraded by atmospheric turbulence using uncertainty. In: IEEE ICIP. IEEE (2021)

    Google Scholar 

  50. Tu, J.Y.-T.: Ray Optics Simulation. https://ricktu288.github.io/ray-optics/

Download references

Acknowledgments

We thank Uri, Ofra, Dor, Dvir and Inbar Shaul, Roi Ronen, Alon Preger, Haran Man, Vadim Holodovsky and Chanoch Kalifa for participating in the field experiment. Yoav Schechner is the Mark and Diane Seiden Chair in Science at the Technion. He is a Landau Fellow - supported by the Taub Foundation. His work was conducted in the Ollendorff Minerva Center. Minvera is funded through the BMBF. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (CloudCT, grant agreement No. 810370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Shaul .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3811 KB)

Supplementary material 2 (mp4 14257 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaul, N., Schechner, Y.Y. (2022). Tomography of Turbulence Strength Based on Scintillation Imaging. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics