Skip to main content

SelectionConv: Convolutional Neural Networks for Non-rectilinear Image Data

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13667))

Included in the following conference series:

Abstract

Convolutional Neural Networks have revolutionized vision applications. There are image domains and representations, however, that cannot be handled by standard CNNs (e.g., spherical images, superpixels). Such data are usually processed using networks and algorithms specialized for each type. In this work, we show that it may not always be necessary to use specialized neural networks to operate on such spaces. Instead, we introduce a new structured graph convolution operator that can copy 2D convolution weights, transferring the capabilities of already trained traditional CNNs to our new graph network. This network can then operate on any data that can be represented as a positional graph. By converting non-rectilinear data to a graph, we can apply these convolutions on these irregular image domains without requiring training on large domain-specific datasets. Results of transferring pre-trained image networks for segmentation, stylization, and depth prediction are demonstrated for a variety of such data forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012). https://doi.org/10.1109/TPAMI.2012.120

    Article  Google Scholar 

  2. Armeni, I., Sax, A., Zamir, A.R., Savarese, S.: Joint 2D-3D-Semantic Data for Indoor Scene Understanding. arXiv:1702.01105 (2017)

  3. Ashikhmin, M.: Synthesizing natural textures. In: Symposium on Interactive 3D Graphics, pp. 217–226 (2001)

    Google Scholar 

  4. Bronstein, M.M., Bruna, J., Cohen, T., Velickovic, P.: Geometric deep learning: grids, groups, graphs, geodesics, and gauges. arXiv:2104.13478 (2021)

  5. Chou, S.H., Sun, C., Wen-Yen, C., Hsu, W.T., Sun, M., Fu, J.: 360-indoor: towards learning real-world objects in 360\(^\circ \) indoor equirectangular images, pp. 834–842 (2020). https://doi.org/10.1109/WACV45572.2020.9093262

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  7. Eder, M., Shvets, M., Lim, J., Frahm, J.M.: Tangent images for mitigating spherical distortion. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12426–12434. IEEE (2020)

    Google Scholar 

  8. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346 (2001)

    Google Scholar 

  9. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  10. Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with continuous B-spline kernels. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 869–877. IEEE (2018)

    Google Scholar 

  11. Fišer, J., et al.: StyLit: illumination-guided example-based stylization of 3D renderings. ACM Trans. Graph. 35(4), 92:1–92:11 (2016). https://doi.org/10.1145/2897824.2925948

  12. Frühstück, A., Alhashim, I., Wonka, P.: TileGAN: synthesis of large-scale non-homogeneous textures. ACM Trans. Graph. (TOG) 38(4), 1–11 (2019)

    Article  Google Scholar 

  13. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. Adv. Neural. Inf. Process. Syst. 28, 262–270 (2015)

    Google Scholar 

  14. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Jampani, V., Sun, D., Liu, M.-Y., Yang, M.-H., Kautz, J.: Superpixel sampling networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 363–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_22

    Chapter  Google Scholar 

  17. Jiang, C.M., Huang, J., Kashinath, K., Marcus, P., Niessner, M.: Spherical CNNs on unstructured grids. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings (2017)

    Google Scholar 

  19. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian institute for advanced research). http://www.cs.toronto.edu/~kriz/cifar.html

  20. Li, X., Liu, S., Kautz, J., Yang, M.H.: Learning linear transformations for fast arbitrary style transfer. In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2019)

    Google Scholar 

  21. Li, Z., Yang, W., Peng, S., Liu, F.: A survey of convolutional neural networks: analysis, applications, and prospects (2020)

    Google Scholar 

  22. Lin, Q., Zhong, W., Lu, J.: Deep superpixel cut for unsupervised image segmentation. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8870–8876 (2021)

    Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2015)

    Google Scholar 

  24. Lu, Y., et al.: Taskology: utilizing task relations at scale. In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2021)

    Google Scholar 

  25. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: International Conference on Computer Vision (ICCV), pp. 1578–1587. IEEE (2019)

    Google Scholar 

  26. Monodepth. https://github.com/OniroAI/MonoDepth-PyTorch

  27. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural networks. In: AAAI, vol. 33, no. 01, pp. 4602–4609 (2019)

    Google Scholar 

  28. PyTorch, Torchvision Models. https://pytorch.org/vision/stable/models.html

  29. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5105–5114. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  30. Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos and spherical images. Int. J. Comput. Vision 126(11), 1199–1219 (2018)

    Article  MathSciNet  Google Scholar 

  31. Shi, W., Qiao, Y.: Fast texture synthesis via pseudo optimizer. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5498–5507. IEEE (2020)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  33. Snelgrove, X.: High-resolution multi-scale neural texture synthesis. In: SIGGRAPH Asia 2017 Technical Briefs, pp. 1–4 (2017)

    Google Scholar 

  34. Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst. 166, 1–27 (2018). https://doi.org/10.1016/j.cviu.2017.03.007

    Article  Google Scholar 

  35. Sýkora, D., et al.: StyleBlit: fast example-based stylization with local guidance. Comput. Graph. Forum 38(2), 83–91 (2019)

    Google Scholar 

  36. Tateno, K., Navab, N., Tombari, F.: Distortion-aware convolutional filters for dense prediction in panoramic images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 732–750. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_43

    Chapter  Google Scholar 

  37. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  38. Verelst, T., Blaschko, M.B., Berman, M.: Generating superpixels using deep image representations. arXiv:1903.04586 (2019)

  39. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)

    Article  Google Scholar 

  40. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 479–488 (2000)

    Google Scholar 

  41. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1–21 (2020). https://doi.org/10.1109/tnnls.2020.2978386

  42. Xu, M., Ding, R., Zhao, H., Qi, X.: Paconv: position adaptive convolution with dynamic kernel assembling on point clouds. In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2021)

    Google Scholar 

  43. Yang, F., Sun, Q., Jin, H., Zhou, Z.: Superpixel segmentation with fully convolutional networks. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13961–13970 (2020)

    Google Scholar 

  44. Yin, K., Gao, J., Shugrina, M., Khamis, S., Fidler, S.: 3DStyleNet: creating 3D shapes with geometric and texture style variations. In: International Conference on Computer Vision (ICCV). IEEE (2021)

    Google Scholar 

  45. Zamir, A.R., Sax, A., Shen, W.B., Guibas, L., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2018)

    Google Scholar 

  46. Zhang, C., Liwicki, S., Smith, W., Cipolla, R.: Orientation-aware semantic segmentation on icosahedron spheres. In: International Conference on Computer Vision (ICCV). IEEE (2019)

    Google Scholar 

  47. Zhao, G., Ge, W., Yu, Y.: GraphFPN: graph feature pyramid network for object detection. In: International Conference on Computer Vision (ICCV), pp. 2763–2772. IEEE (2021)

    Google Scholar 

  48. Zhou, H., Feng, Y., Fang, M., Wei, M., Qin, J., Lu, T.: Adaptive graph convolution for point cloud analysis. In: International Conference on Computer Vision (ICCV), pp. 4945–4954 (2021)

    Google Scholar 

  49. Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang, H.: Non-stationary texture synthesis by adversarial expansion. ACM Trans. Graph. 37(4) (2018). https://doi.org/10.1145/3197517.3201285

  50. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hart .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16124 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hart, D., Whitney, M., Morse, B. (2022). SelectionConv: Convolutional Neural Networks for Non-rectilinear Image Data. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics