Abstract
Image color harmonization algorithm aims to automatically match the color distribution of foreground and background images captured in different conditions. Previous deep learning based models neglect two issues that are critical for practical applications, namely high resolution (HR) image processing and model comprehensibility. In this paper, we propose a novel Deep Comprehensible Color Filter (DCCF) learning framework for high-resolution image harmonization. Specifically, DCCF first downsamples the original input image to its low-resolution (LR) counter-part, then learns four human comprehensible neural filters (i.e. hue, saturation, value and attentive rendering filters) in an end-to-end manner, finally applies these filters to the original input image to get the harmonized result. Benefiting from the comprehensible neural filters, we could provide a simple yet efficient handler for users to cooperate with deep model to get the desired results with very little effort when necessary. Extensive experiments demonstrate the effectiveness of DCCF learning framework and it outperforms state-of-the-art post-processing method on iHarmony4 dataset on images’ full-resolutions by \(7.63\%\) and \(1.69\%\) relative improvements on MSE and PSNR, respectively. Our code is available at https://github.com/rockeyben/DCCF.
B. Xue—Finish this work during an internship at Alibaba Group.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, B.C., Kae, A.: Toward realistic image compositing with adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8415–8424 (2019)
Chen, J., Adams, A., Wadhwa, N., Hasinoff, S.W.: Bilateral guided upsampling. ACM Trans. Graph. (TOG) 35(6), 1–8 (2016)
Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.Q.: Color harmonization. In: ACM SIGGRAPH, pp. 624–630 (2006)
Cong, W., Niu, L., Zhang, J., Liang, J., Zhang, L.: Bargainnet: background-guided domain translation for image harmonization. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2021)
Cong, W., et al.: High-resolution image harmonization via collaborative dual transformations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18470–18479 (2022)
Cong, W., et al.: Dovenet: deep image harmonization via domain verification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8394–8403 (2020)
Cun, X., Pun, C.M.: Improving the harmony of the composite image by spatial-separated attention module. IEEE Trans. Image Process. (TIP) 29, 4759–4771 (2020)
Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)
Gharbi, M., Shih, Y., Chaurasia, G., Ragan-Kelley, J., Paris, S., Durand, F.: Transform recipes for efficient cloud photo enhancement. ACM Trans. Graph. (TOG) 34(6), 1–12 (2015)
Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement, pp. 1780–1789 (2020)
Guo, Z., Zheng, H., Jiang, Y., Gu, Z., Zheng, B.: Intrinsic image harmonization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16367–16376 (2021)
Haeberli, P.: Matrix operations for image processing. Grafica Obscura website (1993). http://graficaobscura.com/matrix/index.html
Hao, G., Iizuka, S., Fukui, K.: Image harmonization with attention-based deep feature modulation. In: British Machine Vision Conference (BMVC) (2020)
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 35(6), 1397–1409 (2013)
Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 26 (2018)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017)
Jia, J., Sun, J., Tang, C.K., Shum, H.Y.: Drag-and-drop pasting. ACM Trans. Graph. (TOG) 25(3), 631–637 (2006)
Jiang, Y., et al.: SSH: a self-supervised framework for image harmonization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4832–4841 (2021)
Kim, B., Ponce, J., Ham, B.: Deformable kernel networks for guided depth map upsampling. CoRR abs/1903.11286 (2019)
Ling, J., Xue, H., Song, L., Xie, R., Gu, X.: Region-aware adaptive instance normalization for image harmonization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9361–9370, June 2021
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32, pp. 8026–8037 (2019)
Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH, pp. 313–318 (2003)
Pitié, F., Kokaram, A.: The linear monge-kantorovitch linear colour mapping for example-based colour transfer. In: Proceedings of the European Conference on Visual Media Production (CVMP), pp. 1–9 (2007)
Pitie, F., Kokaram, A.C., Dahyot, R.: N-dimensional probability density function transfer and its application to color transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), vol. 2, pp. 1434–1439 (2005)
Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. (CG &A) 21(5), 34–41 (2001)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shi, J., Xu, N., Xu, Y., Bui, T., Dernoncourt, F., Xu, C.: Learning by planning: language-guided global image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13590–13599 (2021)
Sofiiuk, K., Popenova, P., Konushin, A.: Foreground-aware semantic representations for image harmonization. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1620–1629 (2021)
Sunkavalli, K., Johnson, M.K., Matusik, W., Pfister, H.: Multi-scale image harmonization. ACM Trans. Graph. (TOG) 29(4), 1–10 (2010)
Tao, M.W., Johnson, M.K., Paris, S.: Error-tolerant image compositing. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 31–44. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_3
Tsai, Y.H., Shen, X., Lin, Z., Sunkavalli, K., Lu, X., Yang, M.H.: Deep image harmonization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3789–3797 (2017)
Wu, H., Zheng, S., Zhang, J., Huang, K.: Fast end-to-end trainable guided filter. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1838–1847 (2018)
Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xue, B., Ran, S., Chen, Q., Jia, R., Zhao, B., Tang, X. (2022). DCCF: Deep Comprehensible Color Filter Learning Framework for High-Resolution Image Harmonization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-20071-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20070-0
Online ISBN: 978-3-031-20071-7
eBook Packages: Computer ScienceComputer Science (R0)