Abstract
Video frame interpolation is a challenging task due to the ever-changing real-world scene. Previous methods often calculate the bi-directional optical flows and then predict the intermediate optical flows under the linear motion assumptions, leading to isotropic intermediate flow generation. Follow-up research obtained anisotropic adjustment through estimated higher-order motion information with extra frames. Based on the motion assumptions, their methods are hard to model the complicated motion in real scenes. In this paper, we propose an end-to-end training method A\(^2\)OF for video frame interpolation with event-driven Anisotropic Adjustment of Optical Flows. Specifically, we use events to generate optical flow distribution masks for the intermediate optical flow, which can model the complicated motion between two frames. Our proposed method outperforms the previous methods in video frame interpolation, taking supervised event-based video interpolation to a higher stage.
S. Wu and K. You—Contribute equally to this paper. Work done while Song Wu, Kaichao You, Yang Tian are interns at Huawei.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)
Bao, W., Lai, W., Ma, C., Zhang, X., Gao, Z., Yang, M.: Depth-aware video frame interpolation. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 3703–3712 (2019)
Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Han, J., et al.: Neuromorphic camera guided high dynamic range imaging. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 1730–1739 (2020)
He, W., et al.: TimeReplayer: unlocking the potential of event cameras for video interpolation. In: CVPR (2022)
Huang, Z., Zhang, T., Heng, W., Shi, B., Zhou, S.: RIFE: real-time intermediate flow estimation for video frame interpolation. CoRR abs/2011.06294 (2020)
Jiang, H., Sun, D., Jampani, V., Yang, M., Learned-Miller, E.G., Kautz, J.: Super slomo: high quality estimation of multiple intermediate frames for video interpolation. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 9000–9008 (2018)
Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., Liu, Y.: Learning event-based motion deblurring. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 3320–3329 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)
Li, H., Yuan, Y., Wang, Q.: Video frame interpolation via residue refinement. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain, 4–8 May 2020, pp. 2613–2617 (2020)
Lin, S., et al.: Learning event-driven video deblurring and interpolation. In: Computer Vision - ECCV 2020–16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part VIII, pp. 16155–16164 (2020)
Liu, Y., Xie, L., Li, S., Sun, W., Qiao, Y., Dong, C.: Enhanced quadratic video interpolation. In: Bartoli, A., Fusiello, A. (eds.) Computer Vision - ECCV 2020 Workshops - Glasgow, UK, 23–28 August 2020, Proceedings, Part IV, pp. 41–56 (2020)
Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 4463–4471 (2017)
Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image matching by simply watching video. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 434–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_26
Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 257–265 (2017)
Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1701–1710 (2018)
Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017 (2017)
Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., Dai, Y.: Bringing a blurry frame alive at high frame-rate with an event camera. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 6820–6829. Computer Vision Foundation/IEEE (2019)
Park, J., Ko, K., Lee, C., Kim, C.-S.: BMBC: bilateral motion estimation with bilateral cost volume for video interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 109–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_7
Park, P.K.J., et al.: Performance improvement of deep learning based gesture recognition using spatiotemporal demosaicing technique. In: 2016 IEEE International Conference on Image Processing, ICIP 2016, Phoenix, AZ, USA, 25–28 September 2016, pp. 1624–1628 (2016)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library, pp. 8024–8035 (2019)
Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator. In: Proceedings of 2nd Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29–31 October 2018, pp. 969–982 (2018)
Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: High speed and high dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 1964–1980 (2021)
Stoffregen, T., et al.: Reducing the sim-to-real gap for event cameras. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 534–549. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_32
Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 237–246 (2017)
Tulyakov, S., et al.: Time lens: event-based video frame interpolation. In: 2021 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021, pp. 16155–16164 (2021)
Wang, B., He, J., Yu, L., Xia, G.-S., Yang, W.: Event enhanced high-quality image recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 155–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_10
Wang, L., Ho, Y.S., Yoon, K.J., et al.: Event-based high dynamic range image and very high frame rate video generation using conditional generative adversarial networks. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 10081–10090 (2019)
Xu, X., Si-Yao, L., Sun, W., Yin, Q., Yang, M.: Quadratic video interpolation. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 1645–1654 (2019)
Zhang, S., Zhang, Yu., Jiang, Z., Zou, D., Ren, J., Zhou, B.: Learning to see in the dark with events. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 666–682. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_39
Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 16654 KB)
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, S. et al. (2022). Video Interpolation by Event-Driven Anisotropic Adjustment of Optical Flow. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-20071-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20070-0
Online ISBN: 978-3-031-20071-7
eBook Packages: Computer ScienceComputer Science (R0)