Skip to main content

Synthesizing Light Field Video from Monocular Video

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

The hardware challenges associated with light-field (LF) imaging has made it difficult for consumers to access its benefits like applications in post-capture focus and aperture control. Learning-based techniques which solve the ill-posed problem of LF reconstruction from sparse (1, 2 or 4) views have significantly reduced the need for complex hardware. LF video reconstruction from sparse views poses a special challenge as acquiring ground-truth for training these models is hard. Hence, we propose a self-supervised learning-based algorithm for LF video reconstruction from monocular videos. We use self-supervised geometric, photometric and temporal consistency constraints inspired from a recent learning-based technique for LF video reconstruction from stereo video. Additionally, we propose three key techniques that are relevant to our monocular video input. We propose an explicit disocclusion handling technique that encourages the network to use information from adjacent input temporal frames, for inpainting disoccluded regions in a LF frame. This is crucial for a self-supervised technique as a single input frame does not contain any information about the disoccluded regions. We also propose an adaptive low-rank representation that provides a significant boost in performance by tailoring the representation to each input scene. Finally, we propose a novel refinement block that is able to exploit the available LF image data using supervised learning to further refine the reconstruction quality. Our qualitative and quantitative analysis demonstrates the significance of each of the proposed building blocks and also the superior results compared to previous state-of-the-art monocular LF reconstruction techniques. We further validate our algorithm by reconstructing LF videos from monocular videos acquired using a commercial GoPro camera. An open-source implementation is also made available (https://github.com/ShrisudhanG/Synthesizing-Light-Field-Video-from-Monocular-Video).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Computational Models of Visual Processing, pp. 3–20. MIT Press (1991)

    Google Scholar 

  2. Bae, K., Ivan, A., Nagahara, H., Park, I.K.: 5d light field synthesis from a monocular video. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 7157–7164. IEEE (2021)

    Google Scholar 

  3. Bhat, S.F., Alhashim, I., Wonka, P.: AdaBins: depth estimation using adaptive bins. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4009–4018 (2021)

    Google Scholar 

  4. Blocker, C.J., Chun, Y., Fessler, J.A.: Low-rank plus sparse tensor models for light-field reconstruction from focal stack data. In: 2018 IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1–5. IEEE (2018)

    Google Scholar 

  5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  7. Dansereau, D.G., Girod, B., Wetzstein, G.: LiFF: light field features in scale and depth. In: Computer Vision and Pattern Recognition (CVPR). IEEE, June 2019

    Google Scholar 

  8. Delbracio, M., Kelly, D., Brown, M.S., Milanfar, P.: Mobile computational photography: a tour. arXiv preprint arXiv:2102.09000 (2021)

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Garg, R., Wadhwa, N., Ansari, S., Barron, J.T.: Learning single camera depth estimation using dual-pixels. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7628–7637 (2019)

    Google Scholar 

  11. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019)

    Google Scholar 

  12. Hajisharif, S., Miandji, E., Guillemot, C., Unger, J.: Single sensor compressive light field video camera. In: Computer Graphics Forum, vol. 39, pp. 463–474. Wiley Online Library (2020)

    Google Scholar 

  13. Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: DeepMVS: learning multi-view stereopsis (2018)

    Google Scholar 

  14. Inagaki, Y., Kobayashi, Y., Takahashi, K., Fujii, T., Nagahara, H.: Learning to capture light fields through a coded aperture camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 431–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_26

    Chapter  Google Scholar 

  15. Ivan, A., et al.: Synthesizing a 4d spatio-angular consistent light field from a single image. arXiv preprint arXiv:1903.12364 (2019)

  16. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. arXiv preprint arXiv:1506.02025 (2015)

  17. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning. Technologies 9(1), 2 (2021)

    Article  Google Scholar 

  18. Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. ACM Trans. Graph. (TOG) 35(6), 1–10 (2016)

    Article  Google Scholar 

  19. Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Deep video inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5792–5801 (2019)

    Google Scholar 

  20. Kim, H.M., Kim, M.S., Lee, G.J., Jang, H.J., Song, Y.M.: Miniaturized 3d depth sensing-based smartphone light field camera. Sensors 20(7), 2129 (2020)

    Article  Google Scholar 

  21. Kobayashi, Y., Takahashi, K., Fujii, T.: From focal stacks to tensor display: A method for light field visualization without multi-view images. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2007–2011 (2017). https://doi.org/10.1109/ICASSP.2017.7952508

  22. Li, Q., Kalantari, N.K.: Synthesizing light field from a single image with variable MPI and two network fusion. ACM Trans. Graph. 39(6), 1–229 (2020)

    Article  Google Scholar 

  23. Lippmann, G.: Épreuves réversibles donnant la sensation du relief. J. Phys. Theor. Appl. 7(1), 821–825 (1908). https://doi.org/10.1051/jphystap:019080070082100

    Article  Google Scholar 

  24. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

    Google Scholar 

  25. Lumentut, J.S., Kim, T.H., Ramamoorthi, R., Park, I.K.: Deep recurrent network for fast and full-resolution light field deblurring. IEEE Signal Process. Lett. 26(12), 1788–1792 (2019)

    Article  Google Scholar 

  26. Maruyama, K., Inagaki, Y., Takahashi, K., Fujii, T., Nagahara, H.: A 3-d display pipeline from coded-aperture camera to tensor light-field display through CNN. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1064–1068 (2019). https://doi.org/10.1109/ICIP.2019.8803741

  27. Marwah, K., Wetzstein, G., Bando, Y., Raskar, R.: Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)

    Article  MATH  Google Scholar 

  28. Mildenhall, B., et al.: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines (2019)

    Google Scholar 

  29. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  30. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field photography with a hand-held plenoptic camera. Ph.D. thesis, Stanford University (2005)

    Google Scholar 

  31. Niklaus, S., Mai, L., Yang, J., Liu, F.: 3d ken burns effect from a single image. ACM Trans. Graph. (ToG) 38(6), 1–15 (2019)

    Article  Google Scholar 

  32. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  33. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021)

    Google Scholar 

  34. Sakai, K., Takahashi, K., Fujii, T., Nagahara, H.: Acquiring dynamic light fields through coded aperture camera. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 368–385. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_22

    Chapter  Google Scholar 

  35. Shedligeri, P., Schiffers, F., Ghosh, S., Cossairt, O., Mitra, K.: SelfVI: self-supervised light-field video reconstruction from stereo video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2491–2501 (2021)

    Google Scholar 

  36. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Adv. Neural. Inf. Process. Syst. 28, 1–8 (2015)

    Google Scholar 

  37. Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.: Pushing the boundaries of view extrapolation with multiplane images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 175–184 (2019)

    Google Scholar 

  38. Srinivasan, P.P., Wang, T., Sreelal, A., Ramamoorthi, R., Ng, R.: Learning to synthesize a 4d RGBD light field from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2243–2251 (2017)

    Google Scholar 

  39. Takahashi, K., Kobayashi, Y., Fujii, T.: From focal stack to tensor light-field display. IEEE Trans. Image Process. 27(9), 4571–4584 (2018). https://doi.org/10.1109/TIP.2018.2839263

    Article  MathSciNet  Google Scholar 

  40. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  41. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  42. Vadathya, A.K., Girish, S., Mitra, K.: A unified learning-based framework for light field reconstruction from coded projections. IEEE Trans. Comput. Imaging 6, 304–316 (2019)

    Article  Google Scholar 

  43. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph. 26(3), 69 (2007)

    Article  Google Scholar 

  44. Wang, L., et al.: DeepLens: shallow depth of field from a single image. CoRR abs/1810.08100 (2018)

    Google Scholar 

  45. Wang, T.C., Zhu, J.Y., Kalantari, N.K., Efros, A.A., Ramamoorthi, R.: Light field video capture using a learning-based hybrid imaging system. ACM Trans. Graph. (TOG) 36(4), 1–13 (2017)

    Google Scholar 

  46. Wang, Y., Liu, F., Wang, Z., Hou, G., Sun, Z., Tan, T.: End-to-end view synthesis for light field imaging with pseudo 4DCNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 340–355. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_21

    Chapter  Google Scholar 

  47. Wetzstein, G., Lanman, D., Hirsch, M., Raskar, R.: Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31(4), 1–12 (2012). https://doi.org/10.1145/2185520.2185576

  48. Wilburn, B., et al.: High performance imaging using large camera arrays. ACM Trans. Graph. 24(3), 765–776 (2005). https://doi.org/10.1145/1073204.1073259

  49. Wu, G., Zhao, M., Wang, L., Dai, Q., Chai, T., Liu, Y.: Light field reconstruction using deep convolutional network on EPI. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6319–6327 (2017)

    Google Scholar 

  50. Xu, R., Li, X., Zhou, B., Loy, C.C.: Deep flow-guided video inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2019)

    Google Scholar 

  51. Yeung, H.W.F., Hou, J., Chen, J., Chung, Y.Y., Chen, X.: Fast light field reconstruction with deep coarse-to-fine modeling of spatial-angular clues. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 138–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_9

    Chapter  Google Scholar 

  52. Zhang, Z., Liu, Y., Dai, Q.: Light field from micro-baseline image pair. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3800–3809 (2015)

    Google Scholar 

  53. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. In: SIGGRAPH (2018)

    Google Scholar 

  54. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Qualcomm Innovation Fellowship (QIF) India 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrisudhan Govindarajan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 905 KB)

Supplementary material 2 (mp4 16394 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Govindarajan, S., Shedligeri, P., Sarah, Mitra, K. (2022). Synthesizing Light Field Video from Monocular Video. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics