Skip to main content

Faster VoxelPose: Real-time 3D Human Pose Estimation by Orthographic Projection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Included in the following conference series:

  • 2503 Accesses

Abstract

While the voxel-based methods have achieved promising results for multi-person 3D pose estimation from multi-cameras, they suffer from heavy computation burdens, especially for large scenes. We present Faster VoxelPose to address the challenge by re-projecting the feature volume to the three two-dimensional coordinate planes and estimating XYZ coordinates from them separately. To that end, we first localize each person by a 3D bounding box by estimating a 2D box and its height based on the volume features projected to the xy-plane and z-axis, respectively. Then for each person, we estimate partial joint coordinates from the three coordinate planes separately which are then fused to obtain the final 3D pose. The method is free from costly 3D-CNNs and improves the speed of VoxelPose by ten times and meanwhile achieves competitive accuracy as the state-of-the-art methods, proving its potential in real-time applications.

H. Ye and W. Zhu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, K., Ofek, E., Gonzalez-Franco, M., Holz, C., Wilson, A.D.: Coolmoves: user motion accentuation in virtual reality. In: IMWUT (2021)

    Google Scholar 

  2. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures for multiple human pose estimation. In: CVPR (2014)

    Google Scholar 

  3. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures revisited: Multiple human pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015)

    Google Scholar 

  4. Belagiannis, V., Wang, X., Schiele, B., Fua, P., Ilic, S., Navab, N.: Multiple human pose estimation with temporally consistent 3D pictorial structures. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 742–754. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_52

    Chapter  Google Scholar 

  5. Bridgeman, L., Volino, M., Guillemaut, J.Y., Hilton, A.: Multi-person 3D pose estimation and tracking in sports. In: CVPR Workshops (2019)

    Google Scholar 

  6. Bultmann, S., Behnke, S.: Real-time multi-view 3D human pose estimation using semantic feedback to smart edge sensors. In: RSS (2021)

    Google Scholar 

  7. Cheng, Y., Yang, B., Wang, B., Yan, W., Tan, R.T.: Occlusion-Aware networks for 3D human pose estimation in video. In: ICCV (2019)

    Google Scholar 

  8. Ci, H., Wang, C., Ma, X., Wang, Y.: Optimizing network structure for 3D human pose estimation. In: ICCV (2019)

    Google Scholar 

  9. Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation from multiple views (2019)

    Google Scholar 

  10. Dong, J., Shuai, Q., Zhang, Y., Liu, X., Zhou, X., Bao, H.: Motion capture from internet videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 210–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_13

    Chapter  Google Scholar 

  11. Ershadi-Nasab, S., Noury, E., Kasaei, S., Sanaei, E.: Multiple human 3D pose estimation from multiview images. Multimed. Tools Appl. 77(12), 15573–15601 (2017). https://doi.org/10.1007/s11042-017-5133-8

    Article  Google Scholar 

  12. Fabbri, M., Lanzi, F., Calderara, S., Alletto, S., Cucchiara, R.: Compressed volumetric heatmaps for multi-person 3D pose estimation. In: CVPR (2020)

    Google Scholar 

  13. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: ICCV (2017)

    Google Scholar 

  14. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, USA (2003)

    Google Scholar 

  15. He, Y., Yan, R., Fragkiadaki, K., Yu, S.I.: Epipolar transformers. In: CVPR, pp. 7779–7788 (2020)

    Google Scholar 

  16. Huang, C., et al.: End-to-end dynamic matching network for multi-view multi-person 3D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 477–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_29

    Chapter  Google Scholar 

  17. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose (2019)

    Google Scholar 

  18. Jansen, Y., Hornbæk, K.: How relevant are incidental power poses for HCI? In: CHI (2018)

    Google Scholar 

  19. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: ICCV (2015)

    Google Scholar 

  20. Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: CVPR (2019)

    Google Scholar 

  21. Li, Z., Ye, J., Song, M., Huang, Y., Pan, Z.: Online knowledge distillation for efficient pose estimation. In: ICCV (2021)

    Google Scholar 

  22. Lin, J., Lee, G.H.: Multi-view multi-person 3D pose estimation with plane sweep stereo. In: CVPR (2021)

    Google Scholar 

  23. Liu, F., Liu, X.: Voxel-based 3D detection and reconstruction of multiple objects from a single image. In: NeurIPS (2021)

    Google Scholar 

  24. Ma, X., Su, J., Wang, C., Ci, H., Wang, Y.: Context modeling in 3D human pose estimation: a unified perspective. In: CVPR (2021)

    Google Scholar 

  25. Mehta, D., et al.: VNect: real-time 3D human pose estimation with a single RGB camera (2017)

    Google Scholar 

  26. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Harvesting multiple views for marker-less 3D human pose annotations. In: CVPR (2017)

    Google Scholar 

  27. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: CVPR (2019)

    Google Scholar 

  28. Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W.: Cross view fusion for 3D human pose estimation. In: ICCV (2019)

    Google Scholar 

  29. Ramanathan, V., Huang, J., Abu-El-Haija, S., Gorban, A., Murphy, K., Fei-Fei, L.: Detecting events and key actors in multi-person videos. In: CVPR (2016)

    Google Scholar 

  30. Reddy, N.D., Guigues, L., Pischulini, L., Eledath, J., Narasimhan, S.: Tessetrack: end-to-end learnable multi-person articulated 3D pose tracking. In: CVPR (2021)

    Google Scholar 

  31. Reddy, N.D., Guigues, L., Pishchulin, L., Eledath, J., Narasimhan, S.G.: Tessetrack: End-to-end learnable multi-person articulated 3d pose tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15190–15200 (2021)

    Google Scholar 

  32. Remelli, E., Han, S., Honari, S., Fua, P., Wang, R.: Lightweight multi-view 3D pose estimation through camera-disentangled representation. In: CVPR (2020)

    Google Scholar 

  33. Rukhovich, D., Vorontsova, A., Konushin, A.: ImvoxelNet: image to voxels projection for monocular and multi-view general-purpose 3d object detection. In: WACV (2022)

    Google Scholar 

  34. Sharma, S., Varigonda, P.T., Bindal, P., Sharma, A., Jain, A.: Monocular 3D human pose estimation by generation and ordinal ranking. In: ICCV (2019)

    Google Scholar 

  35. Shen, X., et al.: Towards fast and accurate multi-person pose estimation on mobile devices. In: IJCAI (2021)

    Google Scholar 

  36. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: CVPR (2019)

    Google Scholar 

  37. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  38. Tu, H., Wang, C., Zeng, W.: VoxelPose: towards multi-camera 3D human pose estimation in wild environment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_12

    Chapter  Google Scholar 

  39. Wang, C., Flynn, J., Wang, Y., Yuille, A.: Recognizing actions in 3D using action-snippets and activated simplices. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  40. Wang, C., Wang, Y., Lin, Z., Yuille, A.L.: Robust 3D human pose estimation from single images or video sequences. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1227–1241 (2018)

    Article  Google Scholar 

  41. Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3D human poses from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2361–2368 (2014)

    Google Scholar 

  42. Wang, C., Wang, Y., Yuille, A.L.: An approach to pose-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 915–922 (2013)

    Google Scholar 

  43. Wang, C., Wang, Y., Yuille, A.L.: Mining 3D key-pose-motifs for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2639–2647 (2016)

    Google Scholar 

  44. Wang, T., Zhang, J., Cai, Y., Yan, S., Feng, J.: Direct multi-view multi-person 3D human pose estimation. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  45. Wang, X., Ang, M.H., Lee, G.H.: Voxel-based network for shape completion by leveraging edge generation. In: ICCV (2021)

    Google Scholar 

  46. Weng, C.Y., Curless, B., Kemelmacher-Shlizerman, I.: Photo wake-up: 3D character animation from a single photo. In: CVPR (2019)

    Google Scholar 

  47. Wu, S., et al.: Graph-Based 3D Multi-Person pose estimation using Multi-View images. In: ICCV (2021)

    Google Scholar 

  48. Xu, J., Zhong, F., Wang, Y.: Learning multi-agent coordination for enhancing target coverage in directional sensor networks. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  49. Xu, L., et al.: ViPNAS: efficient video pose estimation via neural architecture search. In: CVPR (2021)

    Google Scholar 

  50. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI (2018)

    Google Scholar 

  51. Yu, Z., et al.: HUMBI: a large multiview dataset of human body expressions. In: CVPR (2020)

    Google Scholar 

  52. Zhang, F., Zhu, X., Ye, M.: Fast human pose estimation. In: CVPR (2019)

    Google Scholar 

  53. Zhang, S., Staudt, E., Faltemier, T., Roy-chowdhury, A.K.: A camera network tracking (camnet) dataset and performance baseline. In: WACV (2015)

    Google Scholar 

  54. Zhang, Y., Wang, C., Wang, X., Liu, W., Zeng, W.: Voxeltrack: multi-person 3D human pose estimation and tracking in the wild. arXiv preprint arXiv:2108.02452

  55. Zhang, Y., Wang, C., Wang, X., Liu, W., Zeng, W.: Voxeltrack: multi-person 3D human pose estimation and tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

    Google Scholar 

  56. Zhang, Y., An, L., Yu, T., Li, x., Li, K., Liu, Y.: 4D association graph for realtime multi-person motion capture using multiple video cameras. In: CVPR (2020)

    Google Scholar 

  57. Zhang, Z., Wang, C., Qin, W., Zeng, W.: Fusing wearable IMUs with multi-view images for human pose estimation: a geometric approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2200–2209 (2020)

    Google Scholar 

  58. Zhang, Z., Wang, C., Qiu, W., Qin, W., Zeng, W.: AdaFuse: adaptive multiview fusion for accurate human pose estimation in the wild. Int. J. Comput. Vision 129(3), 703–718 (2021)

    Article  Google Scholar 

  59. Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3D human pose estimation with spatial and temporal transformers. In: ICCV (2021)

    Google Scholar 

  60. Zhong, Y., Zhu, M., Peng, H.: VIN: voxel-based implicit network for joint 3D object detection and segmentation for lidars (2021)

    Google Scholar 

  61. Zhou, K., Han, X., Jiang, N., Jia, K., Lu, J.: Hemlets pose: learning part-centric heatmap triplets for accurate 3D human pose estimation. In: ICCV (2019)

    Google Scholar 

  62. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. In: CVPR (2019)

    Google Scholar 

  63. Zhu, L., Rematas, K., Curless, B., Seitz, S.M., Kemelmacher-Shlizerman, I.: Reconstructing NBA players. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 177–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_11

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by MOST-2018AAA0102004 and NSFC-62061136001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 14233 KB)

Supplementary material 2 (pdf 3407 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, H., Zhu, W., Wang, C., Wu, R., Wang, Y. (2022). Faster VoxelPose: Real-time 3D Human Pose Estimation by Orthographic Projection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics