Skip to main content

Regularizing Vector Embedding in Bottom-Up Human Pose Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Included in the following conference series:

Abstract

The embedding-based method such as Associative Embedding is popular in bottom-up human pose estimation. Methods under this framework group candidate keypoints according to the predicted identity embeddings. However, the identity embeddings of different instances are likely to be linearly inseparable in some complex scenes, such as crowded scene or when the number of instances in the image is large. To reduce the impact of this phenomenon on keypoint grouping, we try to learn a sparse multidimensional embedding for each keypoint. We observe that the different dimensions of embeddings are highly linearly correlated. To address this issue, we impose an additional constraint on the embeddings during training phase. Based on the fact that the scales of instances usually have significant variations, we utilize the scales of instances to regularize the embeddings, which effectively reduces the linear correlation of embeddings and makes embeddings being sparse. We evaluate our model on CrowdPose Test and COCO Test-dev. Compared to vanilla Associative Embedding, our method has an impressive superiority in keypoint grouping, especially in crowded scenes with a large number of instances. Furthermore, our method achieves state-of-the-art results on CrowdPose Test (74.5 AP) and COCO Test-dev (72.8 AP), outperforming other bottom-up methods. Our code and pretrained models are available at https://github.com/CR320/CoupledEmbedding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR 2014 Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

  2. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields. arXiv preprint arXiv:1812.08008 (2018)

  3. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)

    Google Scholar 

  4. Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: HigherHRNet: scale-aware representation learning for bottom-up human pose estimation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5386–5395 (2020)

    Google Scholar 

  5. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2353–2362 (2017)

    Google Scholar 

  6. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Advances in Neural Information Processing Systems 26, vol. 26, pp. 2121–2129 (2013)

    Google Scholar 

  7. Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance functions for shape-based image retrieval and classification. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  8. Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up human pose estimation via disentangled keypoint regression. arXiv preprint arXiv:2104.02300 (2021)

  9. Gong, Y., Wang, L., Hodosh, M., Hockenmaier, J., Lazebnik, S.: Improving image-sentence embeddings using large weakly annotated photo collections. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 529–545. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_35

    Chapter  Google Scholar 

  10. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020)

    Article  Google Scholar 

  11. Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for clustering. In: ICPR 2014 Proceedings of the 2014 22nd International Conference on Pattern Recognition, pp. 1532–1537 (2014)

    Google Scholar 

  12. Iqbal, U., Gall, J.: Multi-person pose estimation with local joint-to-person associations. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 627–642. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_44

    Chapter  Google Scholar 

  13. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR 2015: International Conference on Learning Representations 2015 (2015)

    Google Scholar 

  14. Kreiss, S., Bertoni, L., Alahi, A.: PifPaf: composite fields for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11969–11978 (2019)

    Google Scholar 

  15. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Quart. 2(1), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. International Journal of Computer Vision 128(3), 642–656 (2019). https://doi.org/10.1007/s11263-019-01204-1

    Article  Google Scholar 

  17. Li, J., Su, W., Wang, Z.: Simple pose: rethinking and improving a bottom-up approach for multi-person pose estimation. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 11354–11361 (2020)

    Google Scholar 

  18. Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.S., Lu, C.: CrowdPose: efficient crowded scenes pose estimation and a new benchmark. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10863–10872 (2019)

    Google Scholar 

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)

    Article  Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Luo, Z., Wang, Z., Huang, Y., Tan, T., Zhou, E.: Rethinking the heatmap regression for bottom-up human pose estimation. arXiv preprint arXiv:2012.15175 (2020)

  22. Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. In: 31st Annual Conference on Neural Information Processing Systems, NIPS 2017, vol. 30, pp. 2278–2288 (2017)

    Google Scholar 

  23. Nie, X., Feng, J., Zhang, J., Yan, S.: Single-stage multi-person pose machines. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6951–6960 (2019)

    Google Scholar 

  24. Papandreou, G., Zhu, T., Chen, L.-C., Gidaris, S., Tompson, J., Murphy, K.: PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_17

    Chapter  Google Scholar 

  25. Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3711–3719 (2017)

    Google Scholar 

  26. Pishchulin, L., et al.: DeepCut: joint subset partition and labeling for multi person pose estimation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4929–4937 (2016)

    Google Scholar 

  27. Sun, K., et al.: Bottom-up human pose estimation by ranking heatmap-guided adaptive keypoint estimates. arXiv preprint arXiv:2006.15480 (2020)

  28. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5693–5703 (2019)

    Google Scholar 

  29. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10(9), 207–244 (2009)

    MATH  Google Scholar 

  30. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29

    Chapter  Google Scholar 

  31. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: ICML2017 Proceedings of the 34th International Conference on Machine Learning - vol. 70. pp. 3861–3870 (2017)

    Google Scholar 

  32. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

Download references

Acknowledgment

This work was supported by Key-Area Research and Development Program of Guangdong Province (No. 2019B010153001). This work is being sponsored by Zhejiang Lab (No. 2021KH0AB07). This work was also supported by National Natural Science Foundation of China under Grants 62006230, 62076235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Zhou, L., Chen, Y., Tang, M., Wang, J. (2022). Regularizing Vector Embedding in Bottom-Up Human Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics