Abstract
The embedding-based method such as Associative Embedding is popular in bottom-up human pose estimation. Methods under this framework group candidate keypoints according to the predicted identity embeddings. However, the identity embeddings of different instances are likely to be linearly inseparable in some complex scenes, such as crowded scene or when the number of instances in the image is large. To reduce the impact of this phenomenon on keypoint grouping, we try to learn a sparse multidimensional embedding for each keypoint. We observe that the different dimensions of embeddings are highly linearly correlated. To address this issue, we impose an additional constraint on the embeddings during training phase. Based on the fact that the scales of instances usually have significant variations, we utilize the scales of instances to regularize the embeddings, which effectively reduces the linear correlation of embeddings and makes embeddings being sparse. We evaluate our model on CrowdPose Test and COCO Test-dev. Compared to vanilla Associative Embedding, our method has an impressive superiority in keypoint grouping, especially in crowded scenes with a large number of instances. Furthermore, our method achieves state-of-the-art results on CrowdPose Test (74.5 AP) and COCO Test-dev (72.8 AP), outperforming other bottom-up methods. Our code and pretrained models are available at https://github.com/CR320/CoupledEmbedding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR 2014 Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields. arXiv preprint arXiv:1812.08008 (2018)
Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)
Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: HigherHRNet: scale-aware representation learning for bottom-up human pose estimation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5386–5395 (2020)
Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2353–2362 (2017)
Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Advances in Neural Information Processing Systems 26, vol. 26, pp. 2121–2129 (2013)
Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance functions for shape-based image retrieval and classification. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)
Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up human pose estimation via disentangled keypoint regression. arXiv preprint arXiv:2104.02300 (2021)
Gong, Y., Wang, L., Hodosh, M., Hockenmaier, J., Lazebnik, S.: Improving image-sentence embeddings using large weakly annotated photo collections. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 529–545. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_35
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020)
Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for clustering. In: ICPR 2014 Proceedings of the 2014 22nd International Conference on Pattern Recognition, pp. 1532–1537 (2014)
Iqbal, U., Gall, J.: Multi-person pose estimation with local joint-to-person associations. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 627–642. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_44
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR 2015: International Conference on Learning Representations 2015 (2015)
Kreiss, S., Bertoni, L., Alahi, A.: PifPaf: composite fields for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11969–11978 (2019)
Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Quart. 2(1), 83–97 (1955)
Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. International Journal of Computer Vision 128(3), 642–656 (2019). https://doi.org/10.1007/s11263-019-01204-1
Li, J., Su, W., Wang, Z.: Simple pose: rethinking and improving a bottom-up approach for multi-person pose estimation. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 11354–11361 (2020)
Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.S., Lu, C.: CrowdPose: efficient crowded scenes pose estimation and a new benchmark. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10863–10872 (2019)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Luo, Z., Wang, Z., Huang, Y., Tan, T., Zhou, E.: Rethinking the heatmap regression for bottom-up human pose estimation. arXiv preprint arXiv:2012.15175 (2020)
Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. In: 31st Annual Conference on Neural Information Processing Systems, NIPS 2017, vol. 30, pp. 2278–2288 (2017)
Nie, X., Feng, J., Zhang, J., Yan, S.: Single-stage multi-person pose machines. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6951–6960 (2019)
Papandreou, G., Zhu, T., Chen, L.-C., Gidaris, S., Tompson, J., Murphy, K.: PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_17
Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3711–3719 (2017)
Pishchulin, L., et al.: DeepCut: joint subset partition and labeling for multi person pose estimation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4929–4937 (2016)
Sun, K., et al.: Bottom-up human pose estimation by ranking heatmap-guided adaptive keypoint estimates. arXiv preprint arXiv:2006.15480 (2020)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5693–5703 (2019)
Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10(9), 207–244 (2009)
Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29
Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: ICML2017 Proceedings of the 34th International Conference on Machine Learning - vol. 70. pp. 3861–3870 (2017)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)
Acknowledgment
This work was supported by Key-Area Research and Development Program of Guangdong Province (No. 2019B010153001). This work is being sponsored by Zhejiang Lab (No. 2021KH0AB07). This work was also supported by National Natural Science Foundation of China under Grants 62006230, 62076235.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H., Zhou, L., Chen, Y., Tang, M., Wang, J. (2022). Regularizing Vector Embedding in Bottom-Up Human Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)