Skip to main content

Real-RawVSR: Real-World Raw Video Super-Resolution with a Benchmark Dataset

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

In recent years, real image super-resolution (SR) has achieved promising results due to the development of SR datasets and corresponding real SR methods. In contrast, the field of real video SR is lagging behind, especially for real raw videos. Considering the superiority of raw image SR over sRGB image SR, we construct a real-world raw video SR (Real-RawVSR) dataset and propose a corresponding SR method. We utilize two DSLR cameras and a beam-splitter to simultaneously capture low-resolution (LR) and high-resolution (HR) raw videos with 2\(\times \), 3\(\times \), and 4\(\times \) magnifications. There are 450 video pairs in our dataset, with scenes varying from indoor to outdoor, and motions including camera and object movements. To our knowledge, this is the first real-world raw VSR dataset. Since the raw video is characterized by the Bayer pattern, we propose a two-branch network, which deals with both the packed RGGB sequence and the original Bayer pattern sequence, and the two branches are complementary to each other. After going through the proposed co-alignment, interaction, fusion, and reconstruction modules, we generate the corresponding HR sRGB sequence. Experimental results demonstrate that the proposed method outperforms benchmark real and synthetic video SR methods with either raw or sRGB inputs. Our code and dataset are available at https://github.com/zmzhang1998/Real-RawVSR.

J. Yang—This work was supported in part by the National Natural Science Foundation of China under Grant 62072331 and 62231018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since burst image SR is similar to video SR, we present them here other than in the image SR.

  2. 2.

    https://magiclantern.fm/.

  3. 3.

    https://bitbucket.org/baldand/mlrawviewer/src/master/.

  4. 4.

    More details about the network structure are presented in the supplementary file.

References

  1. Abdelhamed, A., Afifi, M., Timofte, R., Brown, M.S.: NTIRE 2020 challenge on real image denoising: dataset, methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 496–497 (2020)

    Google Scholar 

  2. Abdelhamed, A., Timofte, R., Brown, M.S.: NTIRE 2019 challenge on real image denoising: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  3. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 126–135 (2017)

    Google Scholar 

  4. Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Deep burst super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9209–9218 (2021)

    Google Scholar 

  5. Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J.T.: Unprocessing images for learned raw denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11036–11045 (2019)

    Google Scholar 

  6. Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4778–4787 (2017)

    Google Scholar 

  7. Cai, J., Gu, S., Timofte, R., Zhang, L.: NTIRE 2019 challenge on real image super-resolution: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  8. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3086–3095 (2019)

    Google Scholar 

  9. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4947–4956 (2021)

    Google Scholar 

  10. Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: BasicVSR++: improving video super-resolution with enhanced propagation and alignment. arXiv preprint arXiv:2104.13371 (2021)

  11. Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: Investigating tradeoffs in real-world video super-resolution. arXiv preprint arXiv:2111.12704 (2021)

  12. Chen, C., Xiong, Z., Tian, X., Zha, Z.J., Wu, F.: Camera lens super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1652–1660 (2019)

    Google Scholar 

  13. Chen, C., Chen, Q., Do, M.N., Koltun, V.: Seeing motion in the dark. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3185–3194 (2019)

    Google Scholar 

  14. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  15. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  16. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  17. Jiang, H., Zheng, Y.: Learning to see moving objects in the dark. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7324–7333 (2019)

    Google Scholar 

  18. Joze, H.R.V., et al.: ImagePairs: Realistic super resolution dataset via beam splitter camera rig. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 518–519 (2020)

    Google Scholar 

  19. Kappeler, A., Yoo, S., Dai, Q., Katsaggelos, A.K.: Video super-resolution with convolutional neural networks. IEEE Trans. Comput. Imaging 2(2), 109–122 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  21. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)

    Google Scholar 

  22. Liang, C.H., Chen, Y.A., Liu, Y.C., Hsu, W.: Raw image deblurring. IEEE Trans. Multimed. 24, 61–72 (2020)

    Article  Google Scholar 

  23. Liu, J., et al.: Learning raw image denoising with bayer pattern unification and bayer preserving augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  24. Liu, X., Shi, K., Wang, Z., Chen, J.: Exploit camera raw data for video super-resolution via hidden Markov model inference. IEEE Trans. Image Process. 30, 2127–2140 (2021)

    Article  MathSciNet  Google Scholar 

  25. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  26. Lugmayr, A., Danelljan, M., Timofte, R.: NTIRE 2020 challenge on real-world image super-resolution: Methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 494–495 (2020)

    Google Scholar 

  27. Luo, Z., et al.: EBSR: feature enhanced burst super-resolution with deformable alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 471–478 (2021)

    Google Scholar 

  28. Nah, S., et al.: NTIRE 2019 challenge on video deblurring and super-resolution: Dataset and study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  29. Niu, B., et al.: Single image super-resolution via a holistic attention network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_12

    Chapter  Google Scholar 

  30. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  31. Tian, Y., Zhang, Y., Fu, Y., Xu, C.: TDAN: temporally-deformable alignment network for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3360–3369 (2020)

    Google Scholar 

  32. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  33. Wang, Y., Huang, H., Xu, Q., Liu, J., Liu, Y., Wang, J.: Practical deep raw image denoising on mobile devices. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 1–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_1

    Chapter  Google Scholar 

  34. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1385–1392 (2013)

    Google Scholar 

  35. Xu, X., Ma, Y., Sun, W.: Towards real scene super-resolution with raw images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1723–1731 (2019)

    Google Scholar 

  36. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vision 127(8), 1106–1125 (2019)

    Article  Google Scholar 

  37. Yang, X., Xiang, W., Zeng, H., Zhang, L.: Real-world video super-resolution: A benchmark dataset and a decomposition based learning scheme. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4781–4790 (2021)

    Google Scholar 

  38. Yue, H., Cao, C., Liao, L., Chu, R., Yang, J.: Supervised raw video denoising with a benchmark dataset on dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2301–2310 (2020)

    Google Scholar 

  39. Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3762–3770 (2019)

    Google Scholar 

  40. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European conference on computer vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  41. Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. arXiv preprint arXiv:2111.15288 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyu Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2314 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, H., Zhang, Z., Yang, J. (2022). Real-RawVSR: Real-World Raw Video Super-Resolution with a Benchmark Dataset. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics