Abstract
Partial occlusion effects are a phenomenon that blurry objects near a camera are semi-transparent, resulting in partial appearance of occluded background. However, it is challenging for existing bokeh rendering methods to simulate realistic partial occlusion effects due to the missing information of the occluded area in an all-in-focus image. Inspired by the learnable 3D scene representation, Multiplane Image (MPI), we attempt to address the partial occlusion by introducing a novel MPI-based high-resolution bokeh rendering framework, termed MPIB. To this end, we first present an analysis on how to apply the MPI representation to bokeh rendering. Based on this analysis, we propose an MPI representation module combined with a background inpainting module to implement high-resolution scene representation. This representation can then be reused to render various bokeh effects according to the controlling parameters. To train and test our model, we also design a ray-tracing-based bokeh generator for data generation. Extensive experiments on synthesized and real-world images validate the effectiveness and flexibility of this framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadie, G., McAuley, S., Golubev, E., Hill, S., Lagarde, S.: Advances in real-time rendering in games. In: ACM SIGGRAPH 2018 Courses (2018)
Barron, J.T., Adams, A., Shih, Y., Hernández, C.: Fast bilateral-space stereo for synthetic defocus. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4466–4474 (2015)
Busam, B., Hog, M., McDonagh, S., Slabaugh, G.: SteReFo: efficient image refocusing with stereo vision. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW) (2019)
Criminisi, A., Perez, P., Toyama, K.: Object removal by exemplar-based inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, p. II. IEEE (2003)
Dutta, S., Das, S.D., Shah, N.A., Tiwari, A.K.: Stacked deep multi-scale hierarchical network for fast bokeh effect rendering from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2398–2407 (2021)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), vol. 27 (2014)
Hach, T., Steurer, J., Amruth, A., Pappenheim, A.: Cinematic bokeh rendering for real scenes. In: Proceedings of the European Conference on Visual Media Production (CVMP), pp. 1–10 (2015)
Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Trans. Graph. (TOG) 26(3), 4-es (2007)
Ignatov, A., Patel, J., Timofte, R.: Rendering natural camera bokeh effect with deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 418–419 (2020)
Ignatov, A., et al.: Aim 2019 challenge on bokeh effect synthesis: methods and results. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 3591–3598. IEEE (2019)
Ignatov, A., et al.: AIM 2020 challenge on rendering realistic bokeh. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 213–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_13
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)
Lee, S., Eisemann, E., Seidel, H.P.: Real-time lens blur effects and focus control. ACM Trans. Graph. (TOG) 29(4), 1–7 (2010)
Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. (TOG) 9(3), 245–261 (1990)
Li, J., Feng, Z., She, Q., Ding, H., Wang, C., Lee, G.H.: MINE: towards continuous depth MPI with nerf for novel view synthesis. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 12578–12588 (2021)
Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8762–8771 (2021)
Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 85–100 (2018)
Liu, H., Jiang, B., Song, Y., Huang, W., Yang, C.: Rethinking image inpainting via a mutual encoder-decoder with feature equalizations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 725–741. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_43
Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: structure guided image inpainting using edge prediction. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW) (2019)
Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5437–5446 (2020)
Paszke, A., et al.: Automatic differentiation in PyTorch. In: Advances in Neural Information Processing Systems Workshops (NIPSW) (2017)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)
Peng, J., Luo, X., Xian, K., Cao, Z.: Interactive portrait bokeh rendering system. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 2923–2927. IEEE (2021)
Porter, T., Duff, T.: Compositing digital images. ACM Trans. Graph. (TOG) 253–259 (1984)
Qian, M., et al.: BGGAN: bokeh-glass generative adversarial network for rendering realistic bokeh. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 229–244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_14
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 12179–12188 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schedl, D.C., Wimmer, M.: A layered depth-of-field method for solving partial occlusion. J. WSCG 20(3), 239–246 (2012)
Shen, X., et al.: Automatic portrait segmentation for image stylization. Comput. Graph. Forum 35(2), 93–102 (2016)
Shen, X., Tao, X., Gao, H., Zhou, C., Jia, J.: Deep automatic portrait matting. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 92–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_6
Shih, M.L., Su, S.Y., Kopf, J., Huang, J.B.: 3D photography using context-aware layered depth inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8028–8038 (2020)
Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.: Pushing the boundaries of view extrapolation with multiplane images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 175–184 (2019)
Suvorov, R., et al.: Resolution-robust large mask inpainting with Fourier convolutions. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2149–2159 (2022)
Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 551–560 (2020)
Wadhwa, N., et al.: Synthetic depth-of-field with a single-camera mobile phone. ACM Trans. Graph. (TOG) 37(4), 1–13 (2018)
Wang, L., et al.: DeepLens: shallow depth of field from a single image. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)
Wu, J., Zheng, C., Hu, X., Xu, F.: Rendering realistic spectral bokeh due to lens stops and aberrations. Vis. Comput. 29(1), 41–52 (2013)
Xian, K., Peng, J., Zhang, C., Lu, H., Cao, Z.: Ranking-based salient object detection and depth prediction for shallow depth-of-field. Sensors 21(5), 1815 (2021)
Xiao, L., Kaplanyan, A., Fix, A., Chapman, M., Lanman, D.: DeepFocus: learned image synthesis for computational displays. ACM Trans. Graph. (TOG) 37(6), 1–13 (2018)
Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6721–6729 (2017)
Yang, Y., Lin, H., Yu, Z., Paris, S., Yu, J.: Virtual DSLR: high quality dynamic depth-of-field synthesis on mobile platforms. Electron. Imaging 2016(18), 1–9 (2016)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4471–4480 (2019)
Yu, X., Wang, R., Yu, J.: Real-time depth of field rendering via dynamic light field generation and filtering. Comput. Graph. Forum 29(7), 2099–2107 (2010)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–595 (2018)
Zhang, X., Matzen, K., Nguyen, V., Yao, D., Zhang, Y., Ng, R.: Synthetic defocus and look-ahead autofocus for casual videography. ACM Trans. Graph. (TOG) 38, 1–16 (2019)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(6), 1452–1464 (2017)
Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. ACM Trans. Graph. (TOG) 37(4), 1–12 (2018)
Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18
Zhu, M., et al.: Image inpainting by end-to-end cascaded refinement with mask awareness. IEEE Trans. Image Process. (TIP) 30, 4855–4866 (2021)
Acknowledgements
This work was funded by Adobe.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, J., Zhang, J., Luo, X., Lu, H., Xian, K., Cao, Z. (2022). MPIB: An MPI-Based Bokeh Rendering Framework for Realistic Partial Occlusion Effects. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)