Abstract
Exemplar-based colorization approaches rely on reference image to provide plausible colors for target gray-scale image. The key and difficulty of exemplar-based colorization is to establish an accurate correspondence between these two images. Previous approaches have attempted to construct such a correspondence but are faced with two obstacles. First, using luminance channel for the calculation of correspondence is inaccurate. Second, the dense correspondence they built introduces wrong matching results and increases the computation burden. To address these two problems, we propose Semantic-Sparse Colorization Network (SSCN) to transfer both the global image style and detailed semantic-related colors to the gray-scale image in a coarse-to-fine manner. Our network can perfectly balance the global and local colors while alleviating the ambiguous matching problem. Experiments show that our method outperforms existing methods in both quantitative and qualitative evaluation and achieves state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahng, H., et al.: Coloring with words: guiding image colorization through text-based palette generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 443–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_27
Bugeau, A., Ta, V., Papadakis, N.: Variational exemplar-based image colorization. IEEE Trans. Image Process. 23(1), 298–307 (2014)
Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via generative adversarial networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_10
Charpiat, G., Hofmann, M., Schölkopf, B.: Automatic image colorization via multimodal predictions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 126–139. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_10
Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: ICCV 2015, pp. 415–423. IEEE Computer Society (2015)
Chia, A.Y.S., et al.: Semantic colorization with internet images. ACM Trans. Graph. 30(6), 156 (2011)
Ci, Y., Ma, X., Wang, Z., Li, H., Luo, Z.: User-guided deep anime line art colorization with conditional adversarial networks. In: MM 2018, pp. 1536–1544. ACM (2018)
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255. IEEE Computer Society (2009)
Deshpande, A., Lu, J., Yeh, M., Chong, M.J., Forsyth, D.A.: Learning diverse image colorization. In: CVPR 2017, pp. 2877–2885. IEEE Computer Society (2017)
Gupta, R.K., Chia, A.Y.S., Rajan, D., Ng, E.S., Huang, Z.: Image colorization using similar images. In: MM 2012, pp. 369–378. ACM (2012)
He, M., Chen, D., Liao, J., Sander, P.V., Yuan, L.: Deep exemplar-based colorization. ACM Trans. Graph. 37(4), 47:1–47:16 (2018)
Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive instance normalization. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 1510–1519. IEEE Computer Society (2017)
Huang, Y., Tung, Y., Chen, J., Wang, S., Wu, J.: An adaptive edge detection based colorization algorithm and its applications. In: MM 2005, pp. 351–354. ACM (2005)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 4401–4410. Computer Vision Foundation/IEEE (2019)
Kim, E., Lee, S., Park, J., Choi, S., Seo, C., Choo, J.: Deep edge-aware interactive colorization against color-bleeding effects. CoRR (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015 (2015)
Kumar, M., Weissenborn, D., Kalchbrenner, N.: Colorization transformer. CoRR arXiv:2102.04432 (2021)
Lee, J., Kim, E., Lee, Y., Kim, D., Chang, J., Choo, J.: Reference-based sketch image colorization using augmented-self reference and dense semantic correspondence. In: CVPR 2020, pp. 5800–5809. IEEE Computer Society (2020)
Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)
Li, H., Sheng, B., Li, P., Ali, R., Chen, C.L.P.: Globally and locally semantic colorization via exemplar-based broad-GAN. IEEE Trans. Image Process. 30, 8526–8539 (2021)
Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through deep image analogy. ACM Trans. Graph. 36(4), 120:1–120:15 (2017)
Lu, P., Yu, J., Peng, X., Zhao, Z., Wang, X.: Gray2colornet: transfer more colors from reference image. In: MM 2020, pp. 3210–3218. ACM (2020)
Luan, Q., Wen, F., Cohen-Or, D., Liang, L., Xu, Y., Shum, H.: Natural image colorization. In: Proceedings of the Eurographics Symposium on Rendering Techniques 2007, pp. 309–320. Eurographics Association (2007)
Manjunatha, V., Iyyer, M., Boyd-Graber, J.L., Davis, L.S.: Learning to color from language. In: NAACL-HLT 2018, pp. 764–769. Association for Computational Linguistics (2018)
Qu, Y., Wong, T., Heng, P.: Manga colorization. ACM Trans. Graph. 25(3), 1214–1220 (2006)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: controlling deep image synthesis with sketch and color. In: CVPR 2017, pp. 6836–6845. IEEE Computer Society (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR 2015 (2015)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp. 5998–6008 (2017)
Vitoria, P., Raad, L., Ballester, C.: Chromagan: adversarial picture colorization with semantic class distribution. In: WACV 2020, pp. 2434–2443. IEEE (2020)
Wu, Y., Wang, X., Li, Y., Zhang, H., Zhao, X., Shan, Y.: Towards vivid and diverse image colorization with generative color prior. CoRR (2021)
Xiao, C., et al.: Example-based colourization via dense encoding pyramids. Comput. Graph. Forum 39(1), 20–33 (2020)
Xu, K., Li, Y., Ju, T., Hu, S., Liu, T.: Efficient affinity-based edit propagation using K-D tree. ACM Trans. Graph. 28(5), 118 (2009)
Xu, Z., Wang, T., Fang, F., Sheng, Y., Zhang, G.: Stylization-based architecture for fast deep exemplar colorization. In: CVPR 2020, pp. 9360–9369. IEEE (2020)
Yin, W., Lu, P., Zhao, Z., Peng, X.: Yes, “attention is all you need”, for exemplar based colorization. In: MM 2021: ACM Multimedia Conference, Virtual Event, China, 20–24 October 2021, pp. 2243–2251. ACM (2021)
Yoo, S., Bahng, H., Chung, S., Lee, J., Chang, J., Choo, J.: Coloring with limited data: few-shot colorization via memory augmented networks. In: CVPR 2019, pp. 11283–11292. Computer Vision Foundation/IEEE (2019)
Zhang, B., et al.: Deep exemplar-based video colorization. In: CVPR 2019, pp. 8052–8061. Computer Vision Foundation/IEEE (2019)
Zhang, J., et al.: Scsnet: an efficient paradigm for learning simultaneously image colorization and super-resolution. CoRR (2022)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. ACM Trans. Graph. 36(4), 119:1–119:11 (2017)
Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR 2016, pp. 2921–2929. IEEE Computer Society (2016)
Acknowledgment
This work was supported by SZSTC Grant No. JCYJ201908 09172201639 and WDZC20200820200655001, Shenzhen Key Laboratory ZDSYS20210623092001004.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bai, Y., Dong, C., Chai, Z., Wang, A., Xu, Z., Yuan, C. (2022). Semantic-Sparse Colorization Network for Deep Exemplar-Based Colorization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)