Abstract
Predicting the object’s 6D pose from a single RGB image is a fundamental computer vision task. Generally, the distance between transformed object vertices is employed as an objective function for pose estimation methods. However, projective geometry in the camera space is not considered in those methods and causes performance degradation. In this regard, we propose a new pose estimation system based on a projective grid instead of object vertices. Our pose estimation method, dynamic projective spatial transformer network (DProST), localizes the region of interest grid on the rays in camera space and transforms the grid to object space by estimated pose. The transformed grid is used as both a sampling grid and a new criterion of the estimated pose. Additionally, because DProST does not require object vertices, our method can be used in a mesh-less setting by replacing the mesh with a reconstructed feature. Experimental results show that mesh-less DProST outperforms the state-of-the-art mesh-based methods on the LINEMOD and LINEMOD-OCCLUSION dataset, and shows competitive performance on the YCBV dataset with mesh data. The source code is available at https://github.com/parkjaewoo0611/DProST.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6D object pose estimation using 3D object coordinates. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 536–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_35
Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., et al.: Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3364–3372 (2016)
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)
Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)
Chen, X., Dong, Z., Song, J., Geiger, A., Hilliges, O.: Category level object pose estimation via neural analysis-by-synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 139–156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_9
Cheng, Y., et al.: 6D pose estimation with correlation fusion. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 2988–2994. IEEE (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Di, Y., Manhardt, F., Wang, G., Ji, X., Navab, N., Tombari, F.: So-pose: exploiting self-occlusion for direct 6D pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12396–12405 (2021)
Gao, C., et al.: Generalizing spatial transformers to projective geometry with applications to 2D/3D registration. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 329–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_32
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42
Hodaň, T., et al.: BOP challenge 2020 on 6D object localization. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 577–594. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_39
Hu, Y., Fua, P., Wang, W., Salzmann, M.: Single-stage 6D object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2930–2939 (2020)
Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6D object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3385–3394 (2019)
Iwase, S., Liu, X., Khirodkar, R., Yokota, R., Kitani, K.M.: Repose: fast 6D object pose refinement via deep texture rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3303–3312 (2021)
Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. Adv. Neural. Inf. Process. Syst. 28, 2017–2025 (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Labbé, Y., Carpentier, J., Aubry, M., Sivic, J.: CosyPose: consistent multi-view multi-object 6D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_34
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vision 81(2), 155 (2009)
Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: deep iterative matching for 6D pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 683–698 (2018)
Li, Z., Wang, G., Ji, X.: CDPN: coordinates-based disentangled pose network for real-time RGB-based 6-DOF object pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7678–7687 (2019)
Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. IEEE Trans. Visual Comput. Graph. 22(12), 2633–2651 (2015)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Nguyen-Phuoc, T., Li, C., Balaban, S., Yang, Y.L.: RenderNet: a deep convolutional network for differentiable rendering from 3D shapes. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Oberweger, M., Rad, M., Lepetit, V.: Making deep heatmaps robust to partial occlusions for 3D object pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 125–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_8
Park, K., Mousavian, A., Xiang, Y., Fox, D.: LatentFusion: end-to-end differentiable reconstruction and rendering for unseen object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10710–10719 (2020)
Park, K., Patten, T., Vincze, M.: Pix2Pose: pixel-wise coordinate regression of objects for 6d pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7668–7677 (2019)
Park, K., Patten, T., Vincze, M.: Neural object learning for 6D pose estimation using a few cluttered images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 656–673. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_38
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)
Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6Dof pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4561–4570 (2019)
Rad, M., Lepetit, V.: BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3828–3836 (2017)
Ravi, N., et al.: Accelerating 3D deep learning with pytorch3D. arXiv preprint arXiv:2007.08501 (2020)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)
Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2446 (2019)
Song, C., Song, J., Huang, Q.: HybridPose: 6D object pose estimation under hybrid representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 431–440 (2020)
Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. In: Conference on Robot Learning, pp. 306–316. PMLR (2018)
Wang, C., et al.: DenseFusion: 6D object pose estimation by iterative dense fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3343–3352 (2019)
Wang, G., Manhardt, F., Tombari, F., Ji, X.: GDR-Net: geometry-guided direct regression network for monocular 6D object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16611–16621 (2021)
Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6d object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)
Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania (2018). https://doi.org/10.15607/RSS.2018.XIV.019
Xu, D., Anguelov, D., Jain, A.: PointFusion: deep sensor fusion for 3D bounding box estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2018)
Yen-Chen, L., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.Y.: INeRF: inverting neural radiance fields for pose estimation. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1323–1330. IEEE (2021)
Zakharov, S., Shugurov, I., Ilic, S.: DPOD: 6D pose object detector and refiner. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1941–1950 (2019)
Zhu, M., et al.: Single image 3D object detection and pose estimation for grasping. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3936–3943. IEEE (2014)
Acknowledgement
This research was supported in part by LG AI Research, in part by Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea government(MSIT) [NO.2021-0-01343, Artificial Intelligence Graduate School Program (Seoul National University)], and partially by the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University in 2022.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Park, J., Cho, N.I. (2022). DProST: Dynamic Projective Spatial Transformer Network for 6D Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)