Skip to main content

SAGA: Stochastic Whole-Body Grasping with Contact

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Included in the following conference series:

Abstract

The synthesis of human grasping has numerous applications including AR/VR, video games and robotics. While methods have been proposed to generate realistic hand–object interaction for object grasping and manipulation, these typically only consider interacting hand alone. Our goal is to synthesize whole-body grasping motions. Starting from an arbitrary initial pose, we aim to generate diverse and natural whole-body human motions to approach and grasp a target object in 3D space. This task is challenging as it requires modeling both whole-body dynamics and dexterous finger movements. To this end, we propose SAGA (StochAstic whole-body Grasping with contAct), a framework which consists of two key components: (a) Static whole-body grasping pose generation. Specifically, we propose a multi-task generative model, to jointly learn static whole-body grasping poses and human-object contacts. (b) Grasping motion infilling. Given an initial pose and the generated whole-body grasping pose as the start and end of the motion respectively, we design a novel contact-aware generative motion infilling module to generate a diverse set of grasp-oriented motions. We demonstrate the effectiveness of our method, which is a novel generative framework to synthesize realistic and expressive whole-body motions that approach and grasp randomly placed unseen objects. Code and models are available at https://jiahaoplus.github.io/SAGA/saga.html.

Y. Wu and J. Wang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please refer to the Appendix for experimental setup and implementation details..

References

  1. Alahi, A., Ramanathan, V., Fei-Fei, L.: Socially-aware large-scale crowd forecasting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2203–2210 (2014)

    Google Scholar 

  2. Barsoum, E., Kender, J., Liu, Z.: HP-GAN: probabilistic 3D human motion prediction via GAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1418–1427 (2018)

    Google Scholar 

  3. Brahmbhatt, S., Handa, A., Hays, J., Fox, D.: ContactGrasp: functional multi-finger grasp synthesis from contact. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019)

    Google Scholar 

  4. Cai, Y., et al.: Learning progressive joint propagation for human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 226–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_14

    Chapter  Google Scholar 

  5. Cai, Y., et al.: A unified 3D human motion synthesis model via conditional variational auto-encoder. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11645–11655 (2021)

    Google Scholar 

  6. Cao, Z., Gao, H., Mangalam, K., Cai, Q.-Z., Vo, M., Malik, J.: Long-term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23

    Chapter  Google Scholar 

  7. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 168–172 (1994)

    Google Scholar 

  8. Chiu, H.k., Adeli, E., Wang, B., Huang, D.A., Niebles, J.C.: Action-agnostic human pose forecasting. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1423–1432. IEEE (2019)

    Google Scholar 

  9. Detry, R., Kraft, D., Buch, A.G., Krüger, N., Piater, J.: Refining grasp affordance models by experience. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2287–2293 (2010)

    Google Scholar 

  10. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4346–4354 (2015)

    Google Scholar 

  11. Grady, P., Tang, C., Twigg, C.D., Vo, M., Brahmbhatt, S., Kemp, C.C.: ContactOpt: optimizing contact to improve grasps. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  12. Gupta, A., Satkin, S., Efros, A.A., Hebert, M.: From 3D scene geometry to human workspace. In: CVPR 2011, pp. 1961–1968. IEEE (2011)

    Google Scholar 

  13. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  14. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3D annotation of hand and object poses. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3196–3206 (2020)

    Google Scholar 

  15. Harvey, F.G., Yurick, M., Nowrouzezahrai, D., Pal, C.: Robust motion in-betweening. ACM Trans. Graph. (TOG) 39(4), 60–1 (2020)

    Article  Google Scholar 

  16. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  17. Hernandez, A., Gall, J., Moreno-Noguer, F.: Human motion prediction via spatio-temporal inpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7134–7143 (2019)

    Google Scholar 

  18. Holden, D., Komura, T., Saito, J.: Phase-functioned neural networks for character control. ACM Trans. Graph. (TOG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  19. Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. (TOG) 35(4), 1–11 (2016)

    Article  Google Scholar 

  20. Hsiao, K., Lozano-Perez, T.: Imitation learning of whole-body grasps. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5657–5662. IEEE (2006)

    Google Scholar 

  21. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5308–5317 (2016)

    Google Scholar 

  22. Jiang, H., Liu, S., Wang, J., Wang, X.: Hand-object contact consistency reasoning for human grasps generation. In: Proceedings of the International Conference on Computer Vision (2021)

    Google Scholar 

  23. Kalisiak, M., Van de Panne, M.: A grasp-based motion planning algorithm for character animation. J. Vis. Comput. Animat. 12(3), 117–129 (2001)

    Article  MATH  Google Scholar 

  24. Karunratanakul, K., Yang, J., Zhang, Y., Black, M., Muandet, K., Tang, S.: Grasping field: learning implicit representations for human grasps. In: 8th International Conference on 3D Vision, pp. 333–344. IEEE, November 2020

    Google Scholar 

  25. Kaufmann, M., Aksan, E., Song, J., Pece, F., Ziegler, R., Hilliges, O.: Convolutional autoencoders for human motion infilling. In: 2020 International Conference on 3D Vision (3DV), pp. 918–927. IEEE (2020)

    Google Scholar 

  26. Krug, R., Dimitrov, D., Charusta, K., Iliev, B.: On the efficient computation of independent contact regions for force closure grasps. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 586–591 (2010)

    Google Scholar 

  27. Kry, P.G., Pai, D.K.: Interaction capture and synthesis. ACM Trans. Graph. 25(3), 872–880 (2006)

    Article  Google Scholar 

  28. Li, J., et al.: Task-generic hierarchical human motion prior using VAEs. In: 2021 International Conference on 3D Vision (3DV), pp. 771–781. IEEE (2021)

    Google Scholar 

  29. Li, X., Liu, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Putting humans in a scene: learning affordance in 3D indoor environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12368–12376 (2019)

    Google Scholar 

  30. Li, Y., Fu, J.L., Pollard, N.S.: Data-driven grasp synthesis using shape matching and task-based pruning. IEEE Trans. Visual Comput. Graphics 13(4), 732–747 (2007)

    Article  Google Scholar 

  31. Ling, H.Y., Zinno, F., Cheng, G., Van De Panne, M.: Character controllers using motion VAEs. ACM Trans. Graph. (TOG) 39(4), 40–1 (2020)

    Article  Google Scholar 

  32. Liu, L., Hodgins, J.: Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Google Scholar 

  33. Liu, M., Pan, Z., Xu, K., Ganguly, K., Manocha, D.: Generating grasp poses for a high-DOF gripper using neural networks. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1518–1525. IEEE (2019)

    Google Scholar 

  34. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: International Conference on Computer Vision, pp. 5442–5451 (2019)

    Google Scholar 

  35. Makansi, O., Ilg, E., Cicek, O., Brox, T.: Overcoming limitations of mixture density networks: a sampling and fitting framework for multimodal future prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7144–7153 (2019)

    Google Scholar 

  36. Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9489–9497 (2019)

    Google Scholar 

  37. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2891–2900 (2017)

    Google Scholar 

  38. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10975–10985 (2019)

    Google Scholar 

  39. Pollard, N.S., Zordan, V.B.: Physically based grasping control from example. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 311–318 (2005)

    Google Scholar 

  40. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  41. Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: Humor: 3D human motion model for robust pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11488–11499 (2021)

    Google Scholar 

  42. Rijpkema, H., Girard, M.: Computer animation of knowledge-based human grasping. ACM Siggraph Comput. Graph. 25(4), 339–348 (1991)

    Article  Google Scholar 

  43. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6) (2017)

    Google Scholar 

  44. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)

    Google Scholar 

  45. Savva, M., Chang, A.X., Hanrahan, P., Fisher, M., Nießner, M.: Pigraphs: learning interaction snapshots from observations. ACM Trans. Graph. (TOG) 35(4), 1–12 (2016)

    Article  Google Scholar 

  46. Seo, J., Kim, S., Kumar, V.: Planar, bimanual, whole-arm grasping. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3271–3277 (2012)

    Google Scholar 

  47. Starke, S., Zhang, H., Komura, T., Saito, J.: Neural state machine for character-scene interactions. ACM Trans. Graph. 38(6), 209–1 (2019)

    Article  Google Scholar 

  48. Starke, S., Zhao, Y., Komura, T., Zaman, K.: Local motion phases for learning multi-contact character movements. ACM Trans. Graph. (TOG) 39(4), 54-1 (2020)

    Google Scholar 

  49. Taheri, O., Choutas, V., Black, M.J., Tzionas, D.: Goal: generating 4D whole-body motion for hand-object grasping. arXiv preprint arXiv:2112.11454 (2021)

  50. Taheri, O., Ghorbani, N., Black, M.J., Tzionas, D.: GRAB: a dataset of whole-body human grasping of objects. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 581–600. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_34

    Chapter  Google Scholar 

  51. Tai, L., Zhang, J., Liu, M., Burgard, W.: Socially compliant navigation through raw depth inputs with generative adversarial imitation learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1111–1117. IEEE (2018)

    Google Scholar 

  52. Tan, F., Bernier, C., Cohen, B., Ordonez, V., Barnes, C.: Where and who? Automatic semantic-aware person composition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1519–1528. IEEE (2018)

    Google Scholar 

  53. Wang, B., Adeli, E., Chiu, H.k., Huang, D.A., Niebles, J.C.: Imitation learning for human pose prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7124–7133 (2019)

    Google Scholar 

  54. Wang, J., Xu, H., Xu, J., Liu, S., Wang, X.: Synthesizing long-term 3D human motion and interaction in 3D scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9401–9411 (2021)

    Google Scholar 

  55. Yan, S., Li, Z., Xiong, Y., Yan, H., Lin, D.: Convolutional sequence generation for skeleton-based action synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4394–4402 (2019)

    Google Scholar 

  56. Yan, X., et al.: MT-VAE: learning motion transformations to generate multimodal human dynamics. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 265–281 (2018)

    Google Scholar 

  57. Yuan, Y., Kitani, K.: Dlow: diversifying latent flows for diverse human motion prediction. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  58. Zhang, H., Ye, Y., Shiratori, T., Komura, T.: Manipnet: neural manipulation synthesis with a hand-object spatial representation. ACM Trans. Graph. 40, 121:1–121:14 (2021)

    Google Scholar 

  59. Zhang, S., Zhang, Y., Bogo, F., Pollefeys, M., Tang, S.: Learning motion priors for 4D human body capture in 3D scenes. In: IEEE/CVF International Conference on Computer Vision (ICCV 2021) (2021)

    Google Scholar 

  60. Zhang, Y., Black, M.J., Tang, S.: We are more than our joints: predicting how 3D bodies move. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3372–3382 (2021)

    Google Scholar 

  61. Zhang, Y., Yu, W., Liu, C.K., Kemp, C., Turk, G.: Learning to manipulate amorphous materials. ACM Trans. Graph. (TOG) 39(6), 1–11 (2020)

    Google Scholar 

  62. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the SNF grant 200021 204840 and Microsoft Mixed Reality & AI Zurich Lab PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5560 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y. et al. (2022). SAGA: Stochastic Whole-Body Grasping with Contact. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics