Skip to main content

Deep Radial Embedding for Visual Sequence Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Connectionist Temporal Classification (CTC) is a popular objective function in sequence recognition, which provides supervision for unsegmented sequence data through aligning sequence and its corresponding labeling iteratively. The blank class of CTC plays a crucial role in the alignment process and is often considered responsible for the peaky behavior of CTC. In this study, we propose an objective function named RadialCTC that constrains sequence features on a hypersphere while retaining the iterative alignment mechanism of CTC. The learned features of each non-blank class are distributed on a radial arc from the center of the blank class, which provides a clear geometric interpretation and makes the alignment process more efficient. Besides, RadialCTC can control the peaky behavior by simply modifying the logit of the blank class. Experimental results of recognition and localization demonstrate the effectiveness of RadialCTC on two sequence recognition applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albanie, S., et al.: BSL-1K: scaling up co-articulated sign language recognition using mouthing cues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 35–53. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_3

    Chapter  Google Scholar 

  2. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations (2015)

    Google Scholar 

  3. Camgoz, N.C., Hadfield, S., Koller, O., Bowden, R.: Subunets: end-to-end hand shape and continuous sign language recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3075–3084 (2017)

    Google Scholar 

  4. Cheng, K.L., Yang, Z., Chen, Q., Tai, Y.-W.: Fully convolutional networks for continuous sign language recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 697–714. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_41

    Chapter  Google Scholar 

  5. Cihan Camgoz, N., Hadfield, S., Koller, O., Bowden, R.: Subunets: end-to-end hand shape and continuous sign language recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3056–3065 (2017)

    Google Scholar 

  6. Cui, R., Liu, H., Zhang, C.: Recurrent convolutional neural networks for continuous sign language recognition by staged optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7361–7369 (2017)

    Google Scholar 

  7. Cui, R., Liu, H., Zhang, C.: A deep neural framework for continuous sign language recognition by iterative training. IEEE Trans. Multimedia 21(7), 1880–1891 (2019)

    Article  Google Scholar 

  8. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  9. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  10. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  11. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 1764–1772. PMLR (2014)

    Google Scholar 

  12. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2008)

    Article  Google Scholar 

  13. Hadian, H., Sameti, H., Povey, D., Khudanpur, S.: End-to-end speech recognition using lattice-free mmi. In: Interspeech, pp. 12–16 (2018)

    Google Scholar 

  14. Hao, A., Min, Y., Chen, X.: Self-mutual distillation learning for continuous sign language recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 11303–11312 (2021)

    Google Scholar 

  15. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227 (2014)

  16. Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1484–1493. IEEE (2013)

    Google Scholar 

  17. Koller, O., Forster, J., Ney, H.: Continuous sign language recognition: towards large vocabulary statistical recognition systems handling multiple signers. Comput. Vis. Image Underst. 141, 108–125 (2015)

    Article  Google Scholar 

  18. Koller, O., Zargaran, S., Ney, H.: Re-sign: re-aligned end-to-end sequence modelling with deep recurrent CNN-HMMs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4297–4305 (2017)

    Google Scholar 

  19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Lee, C.Y., Osindero, S.: Recursive recurrent nets with attention modeling for OCR in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2231–2239 (2016)

    Google Scholar 

  21. Li, D., Rodriguez, C., Yu, X., Li, H.: Word-level deep sign language recognition from video: a new large-scale dataset and methods comparison. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 1459–1469 (2020)

    Google Scholar 

  22. Li, H., Wang, W.: Reinterpreting CTC training as iterative fitting. Pattern Recogn. 105, 107392 (2020)

    Article  Google Scholar 

  23. Liu, H., Jin, S., Zhang, C.: Connectionist temporal classification with maximum entropy regularization. Adv. Neural. Inf. Process. Syst. 31, 831–841 (2018)

    Google Scholar 

  24. Liu, W., Chen, C., Wong, K.Y.K., Su, Z., Han, J.: Star-net: a spatial attention residue network for scene text recognition. In: Proceedings of the British Machine Vision Conference, vol. 2, p. 7 (2016)

    Google Scholar 

  25. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  26. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning, vol. 2, p. 7 (2016)

    Google Scholar 

  27. Lucas, S.M., Panaretos, A., Sosa, L., et al.: ICDAR 2003 robust reading competitions: entries, results, and future directions. Int. J. Doc. Anal. Recognit. 7(2), 105–122 (2005)

    Article  Google Scholar 

  28. Meng, Q., Zhao, S., Huang, Z., Zhou, F.: Magface: a universal representation for face recognition and quality assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14225–14234 (2021)

    Google Scholar 

  29. Min, Y., Hao, A., Chai, X., Chen, X.: Visual alignment constraint for continuous sign language recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 11542–11551 (2021)

    Google Scholar 

  30. Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: Proceedings of the British Machine Vision Conference (2012)

    Google Scholar 

  31. Parde, C.J., et al.: Deep convolutional neural network features and the original image. arXiv preprint arXiv:1611.01751 (2016)

  32. Pu, J., Zhou, W., Hu, H., Li, H.: Boosting continuous sign language recognition via cross modality augmentation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1497–1505 (2020)

    Google Scholar 

  33. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  34. Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained softmax loss for discriminative face verification. arXiv preprint arXiv:1703.09507 (2017)

  35. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  36. Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with automatic rectification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4168–4176 (2016)

    Google Scholar 

  37. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  38. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: Normface: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1041–1049 (2017)

    Google Scholar 

  39. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  40. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1457–1464. IEEE (2011)

    Google Scholar 

  41. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  42. Xie, Z., Huang, Y., Zhu, Y., Jin, L., Liu, Y., Xie, L.: Aggregation cross-entropy for sequence recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6538–6547 (2019)

    Google Scholar 

  43. Zeyer, A., Beck, E., Schlüter, R., Ney, H.: CTC in the context of generalized full-sum hmm training. In: Interspeech, pp. 944–948 (2017)

    Google Scholar 

  44. Zeyer, A., Schlüter, R., Ney, H.: Why does CTC result in peaky behavior? arXiv preprint arXiv:2105.14849 (2021)

  45. Zhou, H., Zhou, W., Zhou, Y., Li, H.: Spatial-temporal multi-cue network for continuous sign language recognition. In: Proceedings of the Association for the Advancement of Artificial Intelligence, pp. 13009–13016 (2020)

    Google Scholar 

Download references

Acknowledgement

This study was partially supported by the Natural Science Foundation of China under contract No. 61976219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2148 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Min, Y. et al. (2022). Deep Radial Embedding for Visual Sequence Learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics