Skip to main content

Structural Triangulation: A Closed-Form Solution to Constrained 3D Human Pose Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We propose Structural Triangulation, a closed-form solution for optimal 3D human pose considering multi-view 2D pose estimations, calibrated camera parameters, and bone lengths. To start with, we focus on embedding structural constraints of human body in the process of 2D-to-3D inference using triangulation. Assume bone lengths are known in prior, then the inference process is formulated as a constrained optimization problem. By proper approximation, the closed-form solution to this problem is achieved. Further, we generalize our method with Step Constraint Algorithm to help converge when large error occurs in 2D estimations. In experiment, public datasets (Human3.6M and Total Capture) and synthesized data are used for evaluation. Our method achieves state-of-the-art results on Human3.6M Dataset when bone lengths are known and competitive results when they are not. The generality and efficiency of our method are also demonstrated.

This work has been funded in part by the NSFC grants 62176156 and the Science and Technology Commission of Shanghai Municipality under Grant 20DZ2220400. The code is available at https://github.com/chzh9311/structural-triangulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR (2014)

    Google Scholar 

  2. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures for multiple human pose estimation. In: CVPR (2014)

    Google Scholar 

  3. Bogo, F., et al.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  4. Burenius, M., Sullivan, J., Carlsson, S.: 3D pictorial structures for multiple view articulated pose estimation. In: CVPR (2013)

    Google Scholar 

  5. Chen, H., Guo, P., Li, P., Lee, G.H., Chirikjian, G.: Multi-person 3D pose estimation in crowded scenes based on multi-view geometry. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 541–557. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_32

    Chapter  Google Scholar 

  6. Chen, L., Ai, H., Chen, R., Zhuang, Z., Liu, S.: Cross-view tracking for multi-human 3D pose estimation at over 100 fps. In: CVPR (2020)

    Google Scholar 

  7. Chong, E.K., Zak, S.H.: An Introduction to Optimization. John Wiley, Hoboken (2004)

    MATH  Google Scholar 

  8. Conn, A.R., Gould, N.I., Toint, P.L.: Trust Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  9. Dabral, R., Mundhada, A., Kusupati, U., Afaque, S., Sharma, A., Jain, A.: Learning 3D human pose from structure and motion. In: ECCV (2018)

    Google Scholar 

  10. Dong, Z., Song, J., Chen, X., Guo, C., Hilliges, O.: Shape-aware multi-person pose estimation from multi-view images. In: ICCV (2021)

    Google Scholar 

  11. Fischler, M., Elschlager, R.: The representation and matching of pictorial structures. IEEE Trans. Comput. C- 22(1), 67–92 (1973). https://doi.org/10.1109/T-C.1973.223602

    Article  Google Scholar 

  12. Gall, J., Stoll, C., de Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.P.: Motion capture using joint skeleton tracking and surface estimation. In: CVPR (2009)

    Google Scholar 

  13. Hartley, R.I., Sturm, P.: Triangulation. CVIU 68(2), 146–157 (1997). https://doi.org/10.1006/cviu.1997.0547, http://www.sciencedirect.com/science/article/pii/S1077314297905476

  14. He, Y., Yan, R., Fragkiadaki, K., Yu, S.I.: Epipolar transformers. In: CVPR (2020)

    Google Scholar 

  15. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. TPAMI 36(7), 1325–1339 (2014). https://doi.org/10.1109/TPAMI.2013.248

  16. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: ICCV (2019)

    Google Scholar 

  17. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In: ICCV (2019)

    Google Scholar 

  18. Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: Hybrik: a hybrid analytical-neural inverse kinematics solution for 3D human pose and shape estimation. In: CVPR (2021)

    Google Scholar 

  19. Li, X., Fan, Z., Liu, Y., Li, Y., Dai, Q.: 3D pose detection of closely interactive humans using multi-view cameras. Sensors 19(12), 2831 (2019). https://doi.org/10.3390/s19122831, https://www.mdpi.com/1424-8220/19/12/2831

  20. Lin, J., Lee, G.H.: Multi-view multi-person 3D pose estimation with plane sweep stereo. In: CVPR (2021)

    Google Scholar 

  21. Ma, X., Su, J., Wang, C., Ci, H., Wang, Y.: Context modeling in 3D human pose estimation: a unified perspective. In: CVPR (2021)

    Google Scholar 

  22. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: ICCV (2017)

    Google Scholar 

  23. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Harvesting multiple views for marker-less 3D human pose annotations. In: CVPR (2017)

    Google Scholar 

  24. Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W.: Cross view fusion for 3D human pose estimation. In: ICCV (2019)

    Google Scholar 

  25. Remelli, E., Han, S., Honari, S., Fua, P., Wang, R.: Lightweight multi-view 3D pose estimation through camera-disentangled representation. In: CVPR (2020)

    Google Scholar 

  26. Rhodin, H., et al.: Learning monocular 3D human pose estimation from multi-view images. In: CVPR (2018)

    Google Scholar 

  27. Sharma, S., Varigonda, P.T., Bindal, P., Sharma, A., Jain, A.: Monocular 3D human pose estimation by generation and ordinal ranking. In: ICCV (2019)

    Google Scholar 

  28. Tome, D., Toso, M., Agapito, L., Russell, C.: Rethinking pose in 3D: multi-stage refinement and recovery for markerless motion capture. In: 3DV (2018)

    Google Scholar 

  29. Trumble, M., Gilbert, A., Malleson, C., Hilton, A., Collomosse, J.: Total capture: 3d human pose estimation fusing video and inertial sensors. In: BMCV (2017)

    Google Scholar 

  30. Tu, H., Wang, C., Zeng, W.: VoxelPose: towards multi-camera 3D human pose estimation in wild environment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_12

    Chapter  Google Scholar 

  31. Wandt, B., Ackermann, H., Rosenhahn, B.: A kinematic chain space for monocular motion capture. In: ECCV Workshops (2018)

    Google Scholar 

  32. Xie, R., Wang, C., Wang, Y.: Metafuse: a pre-trained fusion model for human pose estimation. In: CVPR (2020)

    Google Scholar 

  33. Xu, J., Yu, Z., Ni, B., Yang, J., Yang, X., Zhang, W.: Deep kinematics analysis for monocular 3D human pose estimation. In: CVPR (2020)

    Google Scholar 

  34. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: CVPR (2011)

    Google Scholar 

  35. Yao, Y., Jafarian, Y., Park, H.S.: Monet: Multiview semi-supervised keypoint detection via epipolar divergence. In: ICCV (2019)

    Google Scholar 

  36. Zeng, A., Sun, X., Yang, L., Zhao, N., Liu, M., Xu, Q.: Learning skeletal graph neural networks for hard 3D pose estimation. In: ICCV (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 430 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Zhao, X., Wan, X. (2022). Structural Triangulation: A Closed-Form Solution to Constrained 3D Human Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20065-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20064-9

  • Online ISBN: 978-3-031-20065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics