Skip to main content

Pose-NDF: Modeling Human Pose Manifolds with Neural Distance Fields

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13665))

Included in the following conference series:

Abstract

We present Pose-NDF, a continuous model for plausible human poses based on neural distance fields (NDFs). Pose or motion priors are important for generating realistic new poses and for reconstructing accurate poses from noisy or partial observations. Pose-NDF learns a manifold of plausible poses as the zero level set of a neural implicit function, extending the idea of modeling implicit surfaces in 3D to the high-dimensional domain \(SO(3)^K\), where a human pose is defined by a single data point, represented by K quaternions. The resulting high-dimensional implicit function can be differentiated with respect to the input poses and thus can be used to project arbitrary poses onto the manifold by using gradient descent on the set of 3-dimensional hyperspheres. In contrast to previous VAE-based human pose priors, which transform the pose space into a Gaussian distribution, we model the actual pose manifold, preserving the distances between poses. We demonstrate that Pose-NDF outperforms existing state-of-the-art methods as a prior in various downstream tasks, ranging from denoising real-world human mocap data, pose recovery from occluded data to 3D pose reconstruction from images. Furthermore, we show that it can be used to generate more diverse poses by random sampling and projection than VAE-based methods. We will release our code and pre-trained model for further research at https://virtualhumans.mpi-inf.mpg.de/posendf/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3D human pose reconstruction. In: CVPR (2015)

    Google Scholar 

  2. Aksan, E., Kaufmann, M., Hilliges, O.: Structured prediction helps 3D human motion modelling. In: ICCV (2019)

    Google Scholar 

  3. Aliakbarian, S., Sadat Saleh, F., Salzmann, M., Petersson, L., Gould, S.: A stochastic conditioning scheme for diverse human motion prediction. In: CVPR (2020)

    Google Scholar 

  4. Alldieck, T., Magnor, M., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: CVPR (2019)

    Google Scholar 

  5. Andreou, N., Lazarou, A., Aristidou, A., Chrysanthou, Y.: A hierarchy-aware pose representation for deep character animation (2021)

    Google Scholar 

  6. Baerlocher, P., Boulic, R.: Parametrization and range of motion of the ball-and-socket joint. In: Proceedings of the IFIP TC5/WG5.10 DEFORM’2000 Workshop and AVATARS’2000 Workshop on Deformable Avatars (2000)

    Google Scholar 

  7. Barsoum, E., Kender, J., Liu, Z.: HP-GAN: probabilistic 3D human motion prediction via GAN. In: CVPR Workshops (2018)

    Google Scholar 

  8. Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3D people from images. In: ICCV (2019)

    Google Scholar 

  9. Bhatnagar, B.L., Xie, X., Petrov, I., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: BEHAVE: dataset and method for tracking human object interactions. In: CVPR (2022)

    Google Scholar 

  10. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  11. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  12. Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 608–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_36

    Chapter  Google Scholar 

  13. Chibane, J., Mir, A., Pons-Moll, G.: Neural unsigned distance fields for implicit function learning. In: NeurIPS (2020)

    Google Scholar 

  14. Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black, M.J.: Monocular expressive body regression through body-driven attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 20–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_2

    Chapter  Google Scholar 

  15. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davydov, A., Remizova, A., Constantin, V., Honari, S., Salzmann, M., Fua, P.: Adversarial parametric pose prior. In: CVPR (2022)

    Google Scholar 

  17. Engell-Nørregård, M., Niebe, S., Erleben, K.: A joint-constraint model for human joints using signed distance-fields. Multibody Syst. Dyn. 28, 69–81 (2012)

    Article  Google Scholar 

  18. Geman, S., McClure, D.E.. In: Statistical methods for tomographic image reconstruction (1987)

    Google Scholar 

  19. Georgakis, G., Li, R., Karanam, S., Chen, T., Košecká, J., Wu, Z.: Hierarchical kinematic human mesh recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 768–784. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_45

    Chapter  Google Scholar 

  20. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  21. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: Proceedings of Machine Learning and Systems (2020)

    Google Scholar 

  22. Guo, C., et al.: Action2Motion: conditioned generation of 3D human motions. In: ACMMM (2020)

    Google Scholar 

  23. Guzov, V., Mir, A., Sattler, T., Pons-Moll, G.: Human POSEitioning System (HPS): 3D human pose estimation and self-localization in large scenes from body-mounted sensors. In: CVPR (2021)

    Google Scholar 

  24. He, T., Xu, Y., Saito, S., Soatto, S., Tung, T.: Arch++: animation-ready clothed human reconstruction revisited. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  25. Herda, L., Urtasun, R., Fua, P.: Hierarchical implicit surface joint limits for human body tracking. In: ECCV (2004)

    Google Scholar 

  26. Herda, L., Urtasun, R., Hanson, A.: Automatic determination of shoulder joint limits using quaternion field boundaries. In: FG (2002)

    Google Scholar 

  27. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: Arch: animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2020)

    Google Scholar 

  28. Huynh, D.Q.: Metrics for 3D rotations: comparison and analysis. J. Math. Imaging Vis. 35(2), 155–164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ji, Y., Xu, F., Yang, Y., Shen, F., Shen, H.T., Zheng, W.S.: A large-scale RGB-D database for arbitrary-view human action recognition. In: ACM International Conference on Multimedia (ACMMM) (2018)

    Google Scholar 

  30. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: BMVC (2010)

    Google Scholar 

  31. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR (2018)

    Google Scholar 

  32. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: CVPR (2020)

    Google Scholar 

  33. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: ICCV (2019)

    Google Scholar 

  34. Krebs, F., Meixner, A., Patzer, I., Asfour, T.: The kit bimanual manipulation dataset. In: IEEE/RAS International Conference on Humanoid Robots (Humanoids) (2021)

    Google Scholar 

  35. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  36. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34(6), 248:1–248:16 (2015)

    Google Scholar 

  37. Loper, M.M., Mahmood, N., Black, M.J.: MoSh: motion and shape capture from sparse markers. ACM Trans. Graph. (Proc. SIGGRAPH Asia) (2014)

    Google Scholar 

  38. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: ICCV (2019)

    Google Scholar 

  39. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In: ICLR (2016)

    Google Scholar 

  40. von Marcard, T., Henschel, R., Black, M., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: ECCV (2018)

    Google Scholar 

  41. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: ECCV (2018)

    Google Scholar 

  42. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  43. Mihajlovic, M., Zhang, Y., Black, M.J., Tang, S.: LEAP: learning articulated occupancy of people. In: CVPR (2021)

    Google Scholar 

  44. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

    Google Scholar 

  45. Novello, T., da Silva, V., Lopes, H., Schardong, G., Schirmer, L., Velho, L.: Neural implicit surfaces in higher dimension (2022)

    Google Scholar 

  46. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: unifying deep learning and model based human pose and shape estimation. In: 3DV (2018)

    Google Scholar 

  47. Ormoneit, D., Sidenbladh, H., Black, M., Hastie, T.: Learning and tracking cyclic human motion. In: Advances in Neural Information Processing Systems, vol. 13 (2000)

    Google Scholar 

  48. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)

    Google Scholar 

  49. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)

    Google Scholar 

  50. Petrovich, M., Black, M.J., Varol, G.: Action-conditioned 3D human motion synthesis with transformer VAE. In: ICCV (2021)

    Google Scholar 

  51. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: CVPR (2020)

    Google Scholar 

  52. Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: HuMoR: 3D human motion model for robust pose estimation. In: ICCV (2021)

    Google Scholar 

  53. Saito, S., Yang, J., Ma, Q., Black, M.J.: SCANimate: weakly supervised learning of skinned clothed avatar networks. In: CVPR (2021)

    Google Scholar 

  54. Sarafianos, N., Boteanu, B., Ionescu, B., Kakadiaris, I.A.: 3D human pose estimation: a review of the literature and analysis of covariates. Comput. Vis. Image Underst. 152, 1–20 (2016)

    Article  Google Scholar 

  55. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: CVPR (2016)

    Google Scholar 

  56. Shao, W., Ng-Thow-Hing, V.: A general joint component framework for realistic articulation in human characters. In: Proceedings of the 2003 Symposium on Interactive 3D Graphics, pp. 11–18 (2003)

    Google Scholar 

  57. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X_45

    Chapter  Google Scholar 

  58. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: NeurIPS (2020)

    Google Scholar 

  59. Stoll, C., Gall, J., de Aguiar, E., Thrun, S., Theobalt, C.: Video-based reconstruction of animatable human characters. In: ACM SIGGRAPH Asia (2010)

    Google Scholar 

  60. Tiwari, G., Bhatnagar, B.L., Tung, T., Pons-Moll, G.: SIZER: a dataset and model for parsing 3D clothing and learning size sensitive 3D clothing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_1

    Chapter  Google Scholar 

  61. Tiwari, G., Sarafianos, N., Tung, T., Pons-Moll, G.: Neural-GIF: neural generalized implicit functions for animating people in clothing. In: ICCV (2021)

    Google Scholar 

  62. Urtasun, R., Fleet, D., Fua, P.: 3D people tracking with Gaussian process dynamical models. In: CVPR (2006)

    Google Scholar 

  63. Xie, X., Bhatnagar, B.L., Pons-Moll, G.: CHORE: contact, human and object reconstruction from a single RGB image. In: European Conference on Computer Vision (ECCV). Springer, Cham (2022)

    Google Scholar 

  64. Xie, Y., et al.: Neural fields in visual computing and beyond. Comput. Graph. Forum (2022)

    Google Scholar 

  65. Xu, Y., Zhu, S.C., Tung, T.: Denserac: joint 3D pose and shape estimation by dense render and compare. In: International Conference on Computer Vision (2019)

    Google Scholar 

  66. Zhang, S., Zhang, H., Bogo, F., Pollefeys, M., Tang, S.: Learning motion priors for 4D human body capture in 3D scenes. In: ICCV (2021)

    Google Scholar 

  67. Zhang, S., Zhang, Y., Ma, Q., Black, M.J., Tang, S.: PLACE: proximity learning of articulation and contact in 3D environments. In: 3DV (2020)

    Google Scholar 

  68. Zhang, Y., Hassan, M., Neumann, H., Black, M.J., Tang, S.: Generating 3D people in scenes without people. In: CVPR (2020)

    Google Scholar 

  69. Zhou, K., Bhatnagar, B.L., Lenssen, J.E., Pons-Moll, G.: TOCH: spatio-temporal object correspondence to hand for motion refinement. In: European Conference on Computer Vision (ECCV). Springer, Cham (2022)

    Google Scholar 

  70. Zou, S., et al.: 3D human shape reconstruction from a polarization image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 351–368. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_21

    Chapter  Google Scholar 

Download references

Acknowledgements

Special thanks to the RVH team and reviewers, their feedback helped improve the manuscript and Andrey Davydov, for providing the code for GAN-based pose prior. This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 409792180 (Emmy Noether Programme, project: Real Virtual Humans), German Federal Ministry of Education and Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A and a Facebook research award. Gerard Pons-Moll is a member of the Machine Learning Cluster of Excellence, EXC number 2064/1 - Project number 390727645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garvita Tiwari .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2043 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiwari, G., Antić, D., Lenssen, J.E., Sarafianos, N., Tung, T., Pons-Moll, G. (2022). Pose-NDF: Modeling Human Pose Manifolds with Neural Distance Fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20065-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20064-9

  • Online ISBN: 978-3-031-20065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics