Abstract
Today’s Mixed Reality head-mounted displays track the user’s head pose in world space as well as the user’s hands for interaction in both Augmented Reality and Virtual Reality scenarios. While this is adequate to support user input, it unfortunately limits users’ virtual representations to just their upper bodies. Current systems thus resort to floating avatars, whose limitation is particularly evident in collaborative settings. To estimate full-body poses from the sparse input sources, prior work has incorporated additional trackers and sensors at the pelvis or lower body, which increases setup complexity and limits practical application in mobile settings. In this paper, we present AvatarPoser, the first learning-based method that predicts full-body poses in world coordinates using only motion input from the user’s head and hands. Our method builds on a Transformer encoder to extract deep features from the input signals and decouples global motion from the learned local joint orientations to guide pose estimation. To obtain accurate full-body motions that resemble motion capture animations, we refine the arm joints’ positions using an optimization routine with inverse kinematics to match the original tracking input. In our evaluation, AvatarPoser achieved new state-of-the-art results in evaluations on large motion capture datasets (AMASS). At the same time, our method’s inference speed supports real-time operation, providing a practical interface to support holistic avatar control and representation for Metaverse applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CMU MoCap Dataset (2004). http://mocap.cs.cmu.edu/
RootMotion Final IK (2018). https://assetstore.unity.com/packages/tools/animation/final-ik-14290
Ahuja, K., Ofek, E., Gonzalez-Franco, M., Holz, C., Wilson, A.D.: CoolMoves: user motion accentuation in virtual reality. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 5(2), 1–23 (2021)
Aksan, E., Kaufmann, M., Cao, P., Hilliges, O.: A spatio-temporal transformer for 3D human motion prediction. In: International Conference on 3D Vision (3DV) (2021)
Ames, B., Morgan, J.: IKFlow: generating diverse inverse kinematics solutions. IEEE Robot. Autom. Lett. 7, 7177–7184 (2022)
Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the inverse kinematics problem. Graph. Models 73(5), 243–260 (2011)
Bócsi, B., Nguyen-Tuong, D., Csató, L., Schoelkopf, B., Peters, J.: Learning inverse kinematics with structured prediction. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 698–703. IEEE (2011)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Çavdar, T., Mohammad, M., Milani, R.A.: A new heuristic approach for inverse kinematics of robot arms. Adv. Sci. Lett. 19(1), 329–333 (2013)
Csiszar, A., Eilers, J., Verl, A.: On solving the inverse kinematics problem using neural networks. In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6. IEEE (2017)
Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988 (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Annual Conference of the North American Chapter of the Association for Computational Linguistics (2019)
Dittadi, A., Dziadzio, S., Cosker, D., Lundell, B., Cashman, T.J., Shotton, J.: Full-body motion from a single head-mounted device: generating SMPL poses from partial observations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11687–11697 (2021)
Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)
Duka, A.V.: Neural network based inverse kinematics solution for trajectory tracking of a robotic arm. Procedia Technol. 12, 20–27 (2014)
Fan, H., et al.: Multiscale vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6824–6835 (2021)
Goldenberg, A., Benhabib, B., Fenton, R.: A complete generalized solution to the inverse kinematics of robots. IEEE J. Robot. Autom. 1(1), 14–20 (1985)
Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. In: ACM SIGGRAPH 2004 Papers, pp. 522–531 (2004)
Heidicker, P., Langbehn, E., Steinicke, F.: Influence of avatar appearance on presence in social VR. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 233–234 (2017)
Huang, Y., Kaufmann, M., Aksan, E., Black, M.J., Hilliges, O., Pons-Moll, G.: Deep inertial poser: learning to reconstruct human pose from sparse inertial measurements in real time. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 185:1–185:15 (2018)
Kang, M., Cho, Y., Yoon, S.E.: RCIK: real-time collision-free inverse kinematics using a collision-cost prediction network. IEEE Robot. Autom. Lett. 7(1), 610–617 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)
Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: HybrIK: a hybrid analytical-neural inverse kinematics solution for 3D human pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3383–3393 (2021)
Li, S., et al.: A mobile robot hand-arm teleoperation system by vision and IMU. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10900–10906. IEEE (2020)
Li, W., Liu, H., Tang, H., Wang, P., Van Gool, L.: MHFormer: multi-hypothesis transformer for 3D human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13147–13156 (2022)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)
Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1954–1963 (2021)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)
Luenberger, D.G., Ye, Y., et al.: Linear and Nonlinear Programming, vol. 2. Springer, Heidelberg (1984)
Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: International Conference on Computer Vision, pp. 5442–5451 (2019)
Marić, F., Giamou, M., Hall, A.W., Khoubyarian, S., Petrović, I., Kelly, J.: Riemannian optimization for distance-geometric inverse kinematics. IEEE Trans. Rob. 38(3), 1703–1722 (2021)
Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: TrackFormer: multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022)
Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0067700
Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation mocap database hdm05. Technical report. CG-2007-2, Universität Bonn (2007)
Parger, M., Mueller, J.H., Schmalstieg, D., Steinberger, M.: Human upper-body inverse kinematics for increased embodiment in consumer-grade virtual reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, pp. 1–10 (2018)
Parker, J.K., Khoogar, A.R., Goldberg, D.E.: Inverse kinematics of redundant robots using genetic algorithms. In: 1989 IEEE International Conference on Robotics and Automation, pp. 271–272. IEEE Computer Society (1989)
Ren, H., Ben-Tzvi, P.: Learning inverse kinematics and dynamics of a robotic manipulator using generative adversarial networks. Robot. Auton. Syst. 124, 103386 (2020)
Rokbani, N., Casals, A., Alimi, A.M.: IK-FA, a new heuristic inverse kinematics solver using firefly algorithm. In: Azar, A.T., Vaidyanathan, S. (eds.) Computational Intelligence Applications in Modeling and Control. SCI, vol. 575, pp. 369–395. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11017-2_15
Ruppel, P., Hendrich, N., Starke, S., Zhang, J.: Cost functions to specify full-body motion and multi-goal manipulation tasks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3152–3159. IEEE (2018)
Starke, S., Zhang, H., Komura, T., Saito, J.: Neural state machine for character-scene interactions. ACM Trans. Graph. 38(6), 209–1 (2019)
Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. ACM Trans. Graph. (TOG) 24(3), 488–495 (2005)
Sun, P., et al.: TransTrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)
Sun, Z., Cao, S., Yang, Y., Kitani, K.M.: Rethinking transformer-based set prediction for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3611–3620 (2021)
Troje, N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2(5), 2 (2002)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Villegas, R., Yang, J., Ceylan, D., Lee, H.: Neural kinematic networks for unsupervised motion retargetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8639–8648 (2018)
Von Marcard, T., Rosenhahn, B., Black, M.J., Pons-Moll, G.: Sparse inertial poser: automatic 3D human pose estimation from sparse IMUs. In: Computer Graphics Forum, vol. 36, pp. 349–360. Wiley Online Library (2017)
Waltemate, T., Gall, D., Roth, D., Botsch, M., Latoschik, M.E.: The impact of avatar personalization and immersion on virtual body ownership, presence, and emotional response. IEEE Trans. Visual Comput. Graph. 24(4), 1643–1652 (2018)
Wang, J., Liu, L., Xu, W., Sarkar, K., Theobalt, C.: Estimating egocentric 3D human pose in global space. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11500–11509 (2021)
Wang, L.C., Chen, C.C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans. Robot. Autom. 7(4), 489–499 (1991)
Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general U-shaped transformer for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17683–17693 (2022)
Yang, D., Kim, D., Lee, S.H.: LoBSTr: real-time lower-body pose prediction from sparse upper-body tracking signals. In: Computer Graphics Forum, vol. 40, pp. 265–275. Wiley Online Library (2021)
Yi, X., et al.: Physical inertial poser (PIP): physics-aware real-time human motion tracking from sparse inertial sensors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13167–13178 (2022)
Yi, X., Zhou, Y., Xu, F.: Transpose: real-time 3D human translation and pose estimation with six inertial sensors. ACM Trans. Graph. (TOG) 40(4), 1–13 (2021)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)
Zhang, X., Bhatnagar, B.L., Guzov, V., Starke, S., Pons-Moll, G.: COUCH: towards controllable human-chair interactions. In: Avidan, S., et al. (eds.) ECCV 2022. LNCS, pp. 518–535. Springer, Cham (2022)
Zhao, J., Badler, N.I.: Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Trans. Graph. (TOG) 13(4), 313–336 (1994)
Zhao, Z., Wu, Z., Zhang, Y., Li, B., Jia, J.: Tracking objects as pixel-wise distributions. In: Proceedings of the European Conference on Computer Vision (ECCV) (2022)
Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3D human pose estimation with spatial and temporal transformers. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: International Conference on Learning Representations (2020)
Acknowledgments
We thank Christian Knieling for his early explorations of learning-based methods for pose estimation with us at ETH Zürich. We thank Zhi Li, Xianghui Xie, and Dengxin Dai from Max Planck Institute for Informatics for their helpful discussions. We also thank Olga Sorkine-Hornung and Alexander Sorkine-Hornung for early discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, J. et al. (2022). AvatarPoser: Articulated Full-Body Pose Tracking from Sparse Motion Sensing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-20065-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20064-9
Online ISBN: 978-3-031-20065-6
eBook Packages: Computer ScienceComputer Science (R0)