Skip to main content

Effective Presentation Attack Detection Driven by Face Related Task

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13665))

Included in the following conference series:


The robustness and generalization ability of Presentation Attack Detection (PAD) methods is critical to ensure the security of Face Recognition Systems (FRSs). However, in a real scenario, Presentation Attacks (PAs) are various and it is hard to predict the Presentation Attack Instrument (PAI) species that will be used by the attacker. Existing PAD methods are highly dependent on the limited training set and cannot generalize well to unknown PAI species. Unlike this specific PAD task, other face related tasks trained by huge amount of real faces (e.g. face recognition and attribute editing) can be effectively adopted into different application scenarios. Inspired by this, we propose to trade position of PAD and face related work in a face system and apply the free acquired prior knowledge from face related tasks to solve face PAD, so as to improve the generalization ability in detecting PAs. The proposed method, first introduces task specific features from other face related task, then, we design a Cross-Modal Adapter using a Graph Attention Network (GAT) to re-map such features to adapt to PAD task. Finally, face PAD is achieved by using the hierarchical features from a CNN-based PA detector and the re-mapped features. The experimental results show that the proposed method can achieve significant improvements in the complicated and hybrid datasets, when compared with the state-of-the-art methods. In particular, when training on the datasets OULU-NPU, CASIA-FASD, and Idiap Replay-Attack, we obtain HTER (Half Total Error Rate) of 5.48% for the testing dataset MSU-MFSD, outperforming the baseline by 7.39%. The source code is available at

W. Zhang and H. Liu—Equal Contribution

This work was done when Haozhe Liu was a visiting student at NTNU, Norway, under the supervision of R. Ramanchandra and C. Busch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Process. Lett. 24(2), 141–145 (2016)

    Google Scholar 

  2. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. IEEE Trans. Inf. Forensics Secur. 11(8), 1818–1830 (2016)

    Article  Google Scholar 

  3. Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A.: OULU-NPU: a mobile face presentation attack database with real-world variations. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 612–618. IEEE (2017)

    Google Scholar 

  4. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7. IEEE (2012)

    Google Scholar 

  5. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  6. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699 (2019)

    Google Scholar 

  7. Drozdowski, P., Grobarek, S., Schurse, J., Rathgeb, C., Stockhardt, F., Busch, C.: Makeup presentation attack potential revisited: skills pay the bills. In: 2021 IEEE International Workshop on Biometrics and Forensics (IWBF), pp. 1–6. IEEE (2021)

    Google Scholar 

  8. de Freitas Pereira, T., Anjos, A., De Martino, J.M., Marcel, S.: Can face anti-spoofing countermeasures work in a real world scenario? In: 2013 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2013)

    Google Scholar 

  9. Freitas Pereira, T., et al.: Face liveness detection using dynamic texture. EURASIP J. Image Video Process. 2014(1), 1–15 (2014).

    Article  Google Scholar 

  10. George, A., Marcel, S.: Deep pixel-wise binary supervision for face presentation attack detection. In: 2019 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2019)

    Google Scholar 

  11. George, A., Marcel, S.: Learning one class representations for face presentation attack detection using multi-channel convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 16, 361–375 (2020)

    Article  Google Scholar 

  12. George, A., Marcel, S.: Cross modal focal loss for RGBD face anti-spoofing. In: CVPR, pp. 7882–7891 (2021)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Heusch, G., George, A., Geissbühler, D., Mostaani, Z., Marcel, S.: Deep models and shortwave infrared information to detect face presentation attacks. IEEE Trans. Biometrics Behavi. Identity Sci. 2(4), 399–409 (2020)

    Article  Google Scholar 

  15. Jia, S., Guo, G., Xu, Z.: A survey on 3D mask presentation attack detection and countermeasures. Pattern Recogn. 98, 107032 (2020)

    Google Scholar 

  16. Jia, Y., Zhang, J., Shan, S., Chen, X.: Single-side domain generalization for face anti-spoofing. In: CVPR, pp. 8484–8493 (2020)

    Google Scholar 

  17. Karasugi, I.P.A., Williem: Face mask invariant end-to-end face recognition. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 261–276. Springer, Cham (2020).

    Chapter  Google Scholar 

  18. Liu, F., Liu, H., Zhang, W., Liu, G., Shen, L.: One-class fingerprint presentation attack detection using auto-encoder network. IEEE Trans. Image Process. 30, 2394–2407 (2021)

    Article  Google Scholar 

  19. Liu, H., Kong, Z., Ramachandra, R., Liu, F., Shen, L., Busch, C.: Taming self-supervised learning for presentation attack detection: in-image de-folding and out-of-image de-mixing. arXiv preprint arXiv:2109.04100 (2021)

  20. Liu, H., Zhang, W., Liu, F., Wu, H., Shen, L.: Fingerprint presentation attack detector using global-local model. IEEE Trans. Cybern. (2021)

    Google Scholar 

  21. Liu, Y., Jourabloo, A., Liu, X.: Learning deep models for face anti-spoofing: binary or auxiliary supervision. In: CVPR, pp. 389–398 (2018)

    Google Scholar 

  22. Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using micro-texture analysis. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE (2011)

    Google Scholar 

  23. Nguyen, S.M., Tran, L.D., Arai, M.: Attended-auxiliary supervision representation for face anti-spoofing. In: ACCV (2020)

    Google Scholar 

  24. Patel, K., Han, H., Jain, A.K.: Secure face unlock: spoof detection on smartphones. IEEE Trans. Inf. Forensics Secur. 11(10), 2268–2283 (2016)

    Article  Google Scholar 

  25. Raghavendra, R., Raja, K.B., Busch, C.: Presentation attack detection for face recognition using light field camera. TIP 24(3), 1060–1075 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Ramachandra, R., Busch, C.: Presentation attack detection methods for face recognition systems: a comprehensive survey. ACM Comput. Surv. (CSUR) 50(1), 1–37 (2017)

    Article  Google Scholar 

  27. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  28. Shao, R., Lan, X., Li, J., Yuen, P.C.: Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In: CVPR, pp. 10023–10031 (2019)

    Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  30. Wang, G., Han, H., Shan, S., Chen, X.: Cross-domain face presentation attack detection via multi-domain disentangled representation learning. In: CVPR, pp. 6678–6687 (2020)

    Google Scholar 

  31. Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-scale facial expression recognition. In: CVPR, pp. 6897–6906 (2020)

    Google Scholar 

  32. Wang, Y., Song, X., Xu, T., Feng, Z., Wu, X.J.: From RGB to depth: domain transfer network for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 16, 4280–4290 (2021)

    Article  Google Scholar 

  33. Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015)

    Article  Google Scholar 

  34. Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. arXiv preprint arXiv:1408.5601 (2014)

  35. Yu, J., Hao, X., Xie, H., Yu, Y.: Fair face recognition using data balancing, enhancement and fusion. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12540, pp. 492–505. Springer, Cham (2020).

    Chapter  Google Scholar 

  36. Yu, Z., et al.: Searching central difference convolutional networks for face anti-spoofing. In: CVPR, pp. 5295–5305 (2020)

    Google Scholar 

  37. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  38. Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 26–31. IEEE (2012)

    Google Scholar 

Download references


This work was supported in part by the National Natural Science Foundation of China (Grant 62076163 and Grant 91959108), and the Shenzhen Fundamental Research Fund (Grant JCYJ20190808163401646). Raghavendra Ramachandra is supported by SALT project funded by the Research Council of Norway.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Feng Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 93 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Liu, H., Liu, F., Ramachandra, R., Busch, C. (2022). Effective Presentation Attack Detection Driven by Face Related Task. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20064-9

  • Online ISBN: 978-3-031-20065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics