Skip to main content

GaitEdge: Beyond Plain End-to-End Gait Recognition for Better Practicality

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Gait is one of the most promising biometrics to identify individuals at a long distance. Although most previous methods have focused on recognizing the silhouettes, several end-to-end methods that extract gait features directly from RGB images perform better. However, we demonstrate that these end-to-end methods may inevitably suffer from the gait-irrelevant noises, i.e. low-level texture and color information. Experimentally, we design the cross-domain evaluation to support this view. In this work, we propose a novel end-to-end framework named GaitEdge which can effectively block gait-irrelevant information and release end-to-end training potential. Specifically, GaitEdge synthesizes the output of the pedestrian segmentation network and then feeds it to the subsequent recognition network, where the synthetic silhouettes consist of trainable edges of bodies and fixed interiors to limit the information that the recognition network receives. Besides, GaitAlign for aligning silhouettes is embedded into the GaitEdge without losing differentiability. Experimental results on CASIA-B and our newly built TTG-200 indicate that GaitEdge significantly outperforms the previous methods and provides a more practical end-to-end paradigm. All the source code are available at https://github.com/ShiqiYu/OpenGait.

J. Liang and C. Fan—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We reprocess CASIA-B and denote the newly processed one as CASIA-B*.

References

  1. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and mandarin. In: International Conference on Machine Learning, pp. 173–182. PMLR (2016)

    Google Scholar 

  2. An, W., et al.: Performance evaluation of model-based gait on multi-view very large population database with pose sequences. IEEE Trans. Biometrics Behav. Identity Sci. 2(4), 421–430 (2020)

    Article  Google Scholar 

  3. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

  4. Chao, H., He, Y., Zhang, J., Feng, J.: GaitSet: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8126–8133 (2019)

    Google Scholar 

  5. Fan, C., et al.: GaitPart: temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225–14233 (2020)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Hou, S., Cao, C., Liu, X., Huang, Y.: Gait lateral network: learning discriminative and compact representations for gait recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 382–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_22

    Chapter  Google Scholar 

  8. Huang, H., et al.: EANet: enhancing alignment for cross-domain person re-identification. arXiv preprint arXiv:1812.11369 (2018)

  9. Iwama, H., Okumura, M., Makihara, Y., Yagi, Y.: The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Secur. 7(5), 1511–1521 (2012)

    Article  Google Scholar 

  10. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  11. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  12. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916 (2018)

    Google Scholar 

  13. Li, X., Makihara, Y., Xu, C., Yagi, Y.: End-to-end model-based gait recognition using synchronized multi-view pose constraint. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4106–4115 (2021)

    Google Scholar 

  14. Li, X., Makihara, Y., Xu, C., Yagi, Y., Yu, S., Ren, M.: End-to-end model-based gait recognition. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12624, pp. 3–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69535-4_1

    Chapter  Google Scholar 

  15. Liao, R., Yu, S., An, W., Huang, Y.: A model-based gait recognition method with body pose and human prior knowledge. Pattern Recogn. 98, 107069 (2020)

    Google Scholar 

  16. Lin, B., Zhang, S., Yu, X.: Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14648–14656 (2021)

    Google Scholar 

  17. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  20. Song, C., Huang, Y., Huang, Y., Jia, N., Wang, L.: GaitNet: an end-to-end network for gait based human identification. Pattern Recogn. 96, 106988 (2019)

    Google Scholar 

  21. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 10(1), 1–14 (2018). https://doi.org/10.1186/s41074-018-0039-6

    Article  Google Scholar 

  22. Teepe, T., Khan, A., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: Gaitgraph: graph convolutional network for skeleton-based gait recognition. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2314–2318. IEEE (2021)

    Google Scholar 

  23. Winter, D.A.: Biomechanics and motor control of human gait: normal, elderly and pathological (1991)

    Google Scholar 

  24. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2016)

    Article  Google Scholar 

  25. Yu, S., Tan, D., Huang, K., Tan, T.: Reducing the effect of noise on human contour in gait recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 338–346. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_36

    Chapter  Google Scholar 

  26. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 441–444. IEEE (2006)

    Google Scholar 

  27. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. arXiv preprint arXiv:2110.06864 (2021)

  28. Zhang, Y., Huang, Y., Yu, S., Wang, L.: Cross-view gait recognition by discriminative feature learning. IEEE Trans. Image Process. 29, 1001–1015 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z., Tran, L., Liu, F., Liu, X.: On learning disentangled representations for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  30. Zhang, Z., et al.: Gait recognition via disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4710–4719 (2019)

    Google Scholar 

  31. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv preprint arXiv:1610.02984 (2016)

  32. Zhu, Z., et al.: Gait recognition in the wild: a benchmark. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14789–14799 (2021)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the helpful discussion with Dr. Chunshui Cao and Dr. Xu Liu. This work was supported in part by the National Natural Science Foundation of China under Grant 61976144, in part by the Stable Support Plan Program of Shenzhen Natural Science Fund under Grant 20200925155017002, in part by the National Key Research and Development Program of China under Grant 2020AAA0140002, and in part by the Shenzhen Technology Plan Program (Grant No. KQTD20170331093217368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqi Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, J., Fan, C., Hou, S., Shen, C., Huang, Y., Yu, S. (2022). GaitEdge: Beyond Plain End-to-End Gait Recognition for Better Practicality. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20065-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20064-9

  • Online ISBN: 978-3-031-20065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics