Skip to main content

Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13665))

Included in the following conference series:

Abstract

Graph neural networks (GNNs) have achieved outstanding performance in semi-supervised learning tasks with partially labeled graph structured data. However, labeling graph data for training is a challenging task, and inaccurate labels may mislead the training process to erroneous GNN models for node classification. In this paper, we consider label poisoning attacks on training data, where the labels of input data are modified by an adversary before training, to understand to what extent the state-of-the-art GNN models are resistant/vulnerable to such attacks. Specifically, we propose a label poisoning attack framework for graph convolutional networks (GCNs), inspired by the equivalence between label propagation and decoupled GCNs that separate message passing from neural networks. Instead of attacking the entire GCN models, we propose to attack solely label propagation for message passing. It turns out that a gradient-based attack on label propagation is effective and efficient towards the misleading of GCN training. More remarkably, such label attack can be topology-agnostic in the sense that the labels to be attacked can be efficiently chosen without knowing graph structures. Extensive experimental results demonstrate the effectiveness of the proposed method against state-of-the-art GCN-like models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Publicly available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

References

  1. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31(5), 833–852 (2018)

    Article  Google Scholar 

  2. Dai, E., Aggarwal, C., Wang, S.: NRGNN: learning a label noise-resistant graph neural network on sparsely and noisily labeled graphs. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 227–236 (2021)

    Google Scholar 

  3. Dai, E., Jin, W., Liu, H., Wang, S.: Towards robust graph neural networks for noisy graphs with sparse labels. arXiv preprint arXiv:2201.00232 (2022)

  4. Dong, H., et al.: On the equivalence of decoupled graph convolution network and label propagation. In: Proceedings of the Web Conference 2021, pp. 3651–3662 (2021)

    Google Scholar 

  5. Fan, W., et al.: Graph neural networks for social recommendation. In: The World Wide Web Conference, pp. 417–426 (2019)

    Google Scholar 

  6. Gao, J., Zhang, T., Xu, C.: Graph convolutional tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4649–4659 (2019)

    Google Scholar 

  7. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035 (2017)

    Google Scholar 

  8. Jin, W., Li, Y., Xu, H., Wang, Y., Tang, J.: Adversarial attacks and defenses on graphs: a review and empirical study. arXiv e-prints pp. arXiv-2003 (2020)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings (2017)

    Google Scholar 

  11. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized pagerank. In: International Conference on Learning Rep resentations, ICLR, 2019 (2019)

    Google Scholar 

  12. Liang, X., Shen, X., Feng, J., Lin, L., Yan, S.: Semantic object parsing with graph LSTM. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 125–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_8

    Chapter  Google Scholar 

  13. Liu, C.Y., Zhou, C., Wu, J., Hu, Y., Guo, L.: Social recommendation with an essential preference space. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  14. Liu, X., Si, S., Zhu, X., Li, Y., Hsieh, C.J.: A unified framework for data poisoning attack to graph-based semi-supervised learning. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 9780–9790 (2019)

    Google Scholar 

  15. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retrieval 3(2), 127–163 (2000)

    Article  Google Scholar 

  16. Muñoz-González, L., et al.: Towards poisoning of deep learning algorithms with back-gradient optimization. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 27–38 (2017)

    Google Scholar 

  17. Namata, G., London, B., Getoor, L., Huang, B., Edu, U.: Query-driven active surveying for collective classification. In: 10th International Workshop on Mining and Learning with Graphs, vol. 8, p. 1 (2012)

    Google Scholar 

  18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  19. Parisot, S.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  20. Rieck, B., Bock, C., Borgwardt, K.: A persistent weisfeiler-lehman procedure for graph classification. In: International Conference on Machine Learning, pp. 5448–5458. PMLR (2019)

    Google Scholar 

  21. Rosenfeld, E., Winston, E., Ravikumar, P., Kolter, Z.: Certified robustness to label-flipping attacks via randomized smoothing. In: International Conference on Machine Learning, pp. 8230–8241. PMLR (2020)

    Google Scholar 

  22. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netwo. 20(1), 61–80 (2008)

    Article  Google Scholar 

  23. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  24. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. In: Relational Representation Learning Workshop, R2L (2018)

    Google Scholar 

  25. Sun, L., et al.: Adversarial attack and defense on graph data: a survey. arXiv preprint arXiv:1812.10528 (2018)

  26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings. (2018)

    Google Scholar 

  27. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  28. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Proceedings of the European conference on computer vision (ECCV), pp. 399–417 (2018)

    Google Scholar 

  29. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  30. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  31. Wu, J., et al.: Learning differential diagnosis of skin conditions with co-occurrence supervision using graph convolutional networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 335–344. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_33

    Chapter  Google Scholar 

  32. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  33. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

    Google Scholar 

  34. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  35. Zhang, M., Hu, L., Shi, C., Wang, X.: Adversarial label-flipping attack and defense for graph neural networks. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 791–800. IEEE (2020)

    Google Scholar 

  36. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  37. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. Adv. Neural Inf. Process. Syst., 321–328 (2004)

    Google Scholar 

  38. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation (2002)

    Google Scholar 

Download references

Acknowledgment

GL thanks the Department of Computer Science, University of Liverpool for the support of the attendance to the conference. XH is supported by the EPSRC under project [EP/T026995/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, G., Huang, X., Yi, X. (2022). Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20065-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20064-9

  • Online ISBN: 978-3-031-20065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics