Skip to main content

Unsupervised Deep Multi-shape Matching

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13663))

Included in the following conference series:

Abstract

3D shape matching is a long-standing problem in computer vision and computer graphics. While deep neural networks were shown to lead to state-of-the-art results in shape matching, existing learning-based approaches are limited in the context of multi-shape matching: (i) either they focus on matching pairs of shapes only and thus suffer from cycle-inconsistent multi-matchings, or (ii) they require an explicit template shape to address the matching of a collection of shapes. In this paper, we present a novel approach for deep multi-shape matching that ensures cycle-consistent multi-matchings while not depending on an explicit template shape. To this end, we utilise a shape-to-universe multi-matching representation that we combine with powerful functional map regularisation, so that our multi-shape matching neural network can be trained in a fully unsupervised manner. While the functional map regularisation is only considered during training time, functional maps are not computed for predicting correspondences, thereby allowing for fast inference. We demonstrate that our method achieves state-of-the-art results on several challenging benchmark datasets, and, most remarkably, that our unsupervised method even outperforms recent supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH (2005)

    Google Scholar 

  2. Attaiki, S., Pai, G., Ovsjanikov, M.: DPFM: deep partial functional maps. In: International Conference on 3D Vision (3DV) (2021)

    Google Scholar 

  3. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: ICCV (2011)

    Google Scholar 

  4. Bernard, F., Thunberg, J., Swoboda, P., Theobalt, C.: HiPPI: higher-order projected power iterations for scalable multi-matching. In: ICCV (2019)

    Google Scholar 

  5. Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: dataset and evaluation for 3d mesh registration. In: CVPR (2014)

    Google Scholar 

  6. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: NIPS (2016)

    Google Scholar 

  7. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: CVPR (2010)

    Google Scholar 

  8. Cosmo, L., Rodola, E., Bronstein, M.M., Torsello, A., Cremers, D., Sahillioglu, Y.: Shrec 2016: partial matching of deformable shapes. Proc. 3DOR 2(9), 12 (2016)

    Google Scholar 

  9. Donati, N., Sharma, A., Ovsjanikov, M.: Deep geometric functional maps: robust feature learning for shape correspondence. In: CVPR (2020)

    Google Scholar 

  10. Eisenberger, M., Lahner, Z., Cremers, D.: Smooth shells: multi-scale shape registration with functional maps. In: CVPR (2020)

    Google Scholar 

  11. Eisenberger, M., Toker, A., Leal-Taixé, L., Cremers, D.: Deep shells: unsupervised shape correspondence with optimal transport. In: NIPS (2020)

    Google Scholar 

  12. Eynard, D., Rodola, E., Glashoff, K., Bronstein, M.M.: Coupled functional maps. In: International Conference on 3D Vision (3DV) (2016)

    Google Scholar 

  13. Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with continuous b-spline kernels. In: CVPR (2018)

    Google Scholar 

  14. Gao, M., Lahner, Z., Thunberg, J., Cremers, D., Bernard, F.: Isometric multi-shape matching. In: CVPR (2021)

    Google Scholar 

  15. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: 3d-coded: 3d correspondences by deep deformation. In: ECCV (2018)

    Google Scholar 

  16. Halimi, O., Litany, O., Rodola, E., Bronstein, A.M., Kimmel, R.: Unsupervised learning of dense shape correspondence. In: CVPR (2019)

    Google Scholar 

  17. Huang, Q.X., Guibas, L.: Consistent shape maps via semidefinite programming. In: Computer Graphics Forum, vol. 32, pp. 177–186 (2013)

    Google Scholar 

  18. Huang, Q., Wang, F., Guibas, L.: Functional map networks for analyzing and exploring large shape collections. ACM Trans. Graph. (ToG) 33(4), 1–11 (2014)

    MATH  Google Scholar 

  19. Huang, R., Ren, J., Wonka, P., Ovsjanikov, M.: Consistent ZoomOut: efficient spectral map synchronization. In: Computer Graphics Forum, vol. 39, pp. 265–278. Wiley Online Library (2020)

    Google Scholar 

  20. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. (TOG) 30(4), 1–12 (2011)

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  22. Lawler, E.L.: The quadratic assignment problem. Manage. Sci. 9(4), 586–599 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Q., Liu, S., Hu, L., Liu, X.: Shape correspondence using anisotropic chebyshev spectral CNNs. In: CVPR (2020)

    Google Scholar 

  24. Litany, O., Remez, T., Rodola, E., Bronstein, A., Bronstein, M.: Deep functional maps: structured prediction for dense shape correspondence. In: ICCV (2017)

    Google Scholar 

  25. Litany, O., Rodolà, E., Bronstein, A.M., Bronstein, M.M.: Fully spectral partial shape matching. In: Computer Graphics Forum, vol. 36, pp. 247–258. Wiley Online Library (2017)

    Google Scholar 

  26. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: ICCV (2015)

    Google Scholar 

  27. Melzi, S., Ren, J., Rodola, E., Sharma, A., Wonka, P., Ovsjanikov, M.: Zoomout: spectral upsampling for efficient shape correspondence. arXiv preprint arXiv:1904.07865 (2019)

  28. Mena, G., Belanger, D., Linderman, S., Snoek, J.: Learning latent permutations with gumbel-sinkhorn networks. In: ICLR (2018)

    Google Scholar 

  29. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: CVPR (2017)

    Google Scholar 

  30. Nogneng, D., Ovsjanikov, M.: Informative descriptor preservation via commutativity for shape matching. In: Computer Graphics Forum, vol. 36, pp. 259–267. Wiley Online Library (2017)

    Google Scholar 

  31. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (ToG) 31(4), 1–11 (2012)

    Article  Google Scholar 

  32. Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching problem by permutation synchronization. In: NIPS (2013)

    Google Scholar 

  33. Pai, G., Ren, J., Melzi, S., Wonka, P., Ovsjanikov, M.: Fast sinkhorn filters: using matrix scaling for non-rigid shape correspondence with functional maps. In: CVPR (2021)

    Google Scholar 

  34. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS (2017)

    Google Scholar 

  36. Ren, J., Panine, M., Wonka, P., Ovsjanikov, M.: Structured regularization of functional map computations. In: Computer Graphics Forum, vol. 38, pp. 39–53. Wiley Online Library (2019)

    Google Scholar 

  37. Ren, J., Poulenard, A., Wonka, P., Ovsjanikov, M.: Continuous and orientation-preserving correspondences via functional maps. ACM Trans. Graph. (ToG) 37, 1–16 (2018)

    Article  Google Scholar 

  38. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. In: Computer Graphics Forum, vol. 36, pp. 222–236. Wiley Online Library (2017)

    Google Scholar 

  39. Roufosse, J.M., Sharma, A., Ovsjanikov, M.: Unsupervised deep learning for structured shape matching. In: ICCV (2019)

    Google Scholar 

  40. Salti, S., Tombari, F., Di Stefano, L.: Shot: Unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)

    Article  Google Scholar 

  41. Sharma, A., Ovsjanikov, M.: Weakly supervised deep functional maps for shape matching. In: NIPS (2020)

    Google Scholar 

  42. Sharp, N., Attaiki, S., Crane, K., Ovsjanikov, M.: DiffusionNet: discretization agnostic learning on surfaces. arXiv preprint arXiv:2012.00888 (2020)

  43. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21(2), 343–348 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tam, G.K., et al.: Registration of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Graph. 19(7), 1199–1217 (2012)

    Article  Google Scholar 

  45. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV (2019)

    Google Scholar 

  46. Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1681–1707 (2011)

    Google Scholar 

  47. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  48. Vestner, M., Litman, R., Rodola, E., Bronstein, A., Cremers, D.: Product manifold filter: non-rigid shape correspondence via kernel density estimation in the product space. In: CVPR (2017)

    Google Scholar 

  49. Wiersma, R., Eisemann, E., Hildebrandt, K.: CNNs on surfaces using rotation-equivariant features. ACM Trans. Graph. (TOG) 39(4), 1–92 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Cao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6725 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, D., Bernard, F. (2022). Unsupervised Deep Multi-shape Matching. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20062-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20061-8

  • Online ISBN: 978-3-031-20062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics