Abstract
Despite recent success, deep learning-based methods for predicting 3D garment deformation under body motion suffer from interpenetration problems between the garment and the body. To address this problem, we propose a novel collision handling neural network layer called Repulsive Force Unit (ReFU). Based on the signed distance function (SDF) of the underlying body and the current garment vertex positions, ReFU predicts the per-vertex offsets that push any interpenetrating vertex to a collision-free configuration while preserving the fine geometric details. We show that ReFU is differentiable with trainable parameters and can be integrated into different network backbones that predict 3D garment deformations. Our experiments show that ReFU significantly reduces the number of collisions between the body and the garment and better preserves geometric details compared to prior methods based on collision loss or post-processing optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alldieck, T., Xu, H., Sminchisescu, C.: imghum: implicit generative models of 3d human shape and articulated pose. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5461–5470, October 2021
Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54 (1998)
Bertiche, H., Madadi, M., Escalera, S.: CLOTH3D: clothed 3D humans. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 344–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_21
Bertiche, H., Madadi, M., Escalera, S.: PBNS: physically based neural simulator for unsupervised garment pose space deformation. arXiv preprint arXiv:2012.11310 (2020)
Bertiche, H., Madadi, M., Tylson, E., Escalera, S.: DeepSD: automatic deep skinning and pose space deformation for 3d garment animation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5471–5480 (2021)
Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3d people from images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5420–5430 (2019)
Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21(3), 594–603 (2002)
Brochu, T., Edwards, E., Bridson, R.: Efficient geometrically exact continuous collision detection. ACM Trans. Graph. 31(4), 96:1–96:7 (2012)
Choi, K.J., Ko, H.S.: Stable but responsive cloth. In: ACM SIGGRAPH 2005 Courses (2005)
Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)
De Aguiar, E., Sigal, L., Treuille, A., Hodgins, J.K.: Stable spaces for real-time clothing. ACM Trans. Graph. (TOG) 29(4), 1–9 (2010)
Bertiche, H., Madadi, M., Escalera, S.: CLOTH3D: clothed 3D humans. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 344–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_21
Fisher, S., Lin, M.C.: Fast penetration depth estimation for elastic bodies using deformed distance fields. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 1, pp. 330–336. IEEE (2001)
Govindaraju, N.K., Lin, M.C., Manocha, D.: Quick-CULLIDE: fast inter- and intra-object collision culling using graphics hardware. In: IEEE Virtual Reality Conference 2005, VR 2005, Bonn, Germany, 12–16 March 2005, pp. 59–66 (2005)
Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 62–67. Citeseer (2003)
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020)
Guan, P., Reiss, L., Hirshberg, D.A., Weiss, A., Black, M.J.: Drape: dressing any person. ACM Trans. Graph. (TOG) 31(4), 1–10 (2012)
Gundogdu, E., Constantin, V., Seifoddini, A., Dang, M., Salzmann, M., Fua, P.: Garnet: a two-stream network for fast and accurate 3d cloth draping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8739–8748 (2019)
Harmon, D., Vouga, E., Tamstorf, R., Grinspun, E.: Robust treatment of simultaneous collisions. ACM Trans. Graph. 27(3), 23:1–23:4 (2008)
Holden, D., Duong, B.C., Datta, S., Nowrouzezahrai, D.: Subspace neural physics: Fast data-driven interactive simulation. In: Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–12 (2019)
Kim, D., Koh, W., Narain, R., Fatahalian, K., Treuille, A., O’Brien, J.F.: Near-exhaustive precomputation of secondary cloth effects. ACM Trans. Graph. 32(4), 87:1–87:7 (2013)
Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation, and Applications, vol. 10. Springer Science & Business Media, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33287-6
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)
Ma, B., Han, Z., Liu, Y.S., Zwicker, M.: Neural-pull: Learning signed distance functions from point clouds by learning to pull space onto surfaces. arXiv preprint arXiv:2011.13495 (2020)
Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Corse, Z.: Local optimization for robust signed distance field collision. Proc. ACM Comput. Graph. Interact. Techn. 3(1), 1–17 (2020)
Mihajlovic, M., Zhang, Y., Black, M.J., Tang, S.: LEAP: learning articulated occupancy of people. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2021
Narain, R., Samii, A., O’Brien, J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31(6), 147:1–147:10 (2012)
Otaduy, M.A., Tamstorf, R., Steinemann, D., Gross, M.: Implicit contact handling for deformable objects. Comput. Graph. Forum 28(2), 559–568 (2009)
Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision and proximity queries. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3859–3866. IEEE (2012)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)
Patel, C., Liao, Z., Pons-Moll, G.: TailorNet: predicting clothing in 3d as a function of human pose, shape and garment style. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7365–7375 (2020)
Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3d human pose and shape from a single color image. In: CVPR, pp. 459–468 (2018)
Provot, X.: Collision and self-collision handling in cloth model dedicated to design garments. In: Thalmann, D., van de Panne, M. (eds.) Computer Animation and Simulation 1997. Eurographics, pp. 177–189. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-6874-5_13
Santesteban, I., Otaduy, M.A., Casas, D.: Learning-based animation of clothing for virtual try-on. In: Computer Graphics Forum, vol. 38, pp. 355–366. Wiley Online Library (2019)
Santesteban, I., Thuerey, N., Otaduy, M.A., Casas, D.: Self-supervised collision handling via generative 3d garment models for virtual try-on. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Sitzmann, V., Chan, E.R., Tucker, R., Snavely, N., Wetzstein, G.: MetaSDF: meta-learning signed distance functions. arXiv preprint arXiv:2006.09662 (2020)
Tan, Q., Pan, Z., Gao, L., Manocha, D.: Realtime simulation of thin-shell deformable materials using CNN-based mesh embedding. IEEE Robot. Autom. Lett. 5(2), 2325–2332 (2020)
Tan, Q., Pan, Z., Manocha, D.: Lcollision: Fast generation of collision-free human poses using learned non-penetration constraints. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI (2021)
Tan, Q., Pan, Z., Smith, B., Shiratori, T., Manocha, D.: Active learning of neural collision handler for complex 3d mesh deformations (2021)
Tang, M., Tong, R., Wang, Z., Manocha, D.: Fast and exact continuous collision detection with Bernstein sign classification. ACM Trans. Graph. (SIGGRAPH Asia). 33, 186:1–186:8 (2014)
Tang, M., Wang, T., Liu, Z., Tong, R., Manocha, D.: I-Cloth: Incremental collision handling for GPU-based interactive cloth simulation. ACM Trans. Graph. 37(6), 204:1–204:10 (2018)
Teng, Y., Otaduy, M.A., Kim, T.: Simulating articulated subspace self-contact. ACM Trans. Graph. (TOG) 33(4), 1–9 (2014)
Wang, H.: Defending continuous collision detection against errors. ACM Trans. Graph. (SIGGRAPH). 33(4), 122:1–122:10 (2014)
Wang, T.Y., Ceylan, D., Popovic, J., Mitra, N.J.: Learning a shared shape space for multimodal garment design. ACM Trans. Graph. 37(6), 1:1–1:14 (2018). https://doi.org/10.1145/3272127.3275074
Zheng, H., Yang, Z., Liu, W., Liang, J., Li, Y.: Improving deep neural networks using softplus units. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–4 (2015). https://doi.org/10.1109/IJCNN.2015.7280459
Zhou, Y., et al.: Fully convolutional mesh autoencoder using efficient spatially varying kernels. arXiv preprint arXiv:2006.04325 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tan, Q., Zhou, Y., Wang, T., Ceylan, D., Sun, X., Manocha, D. (2022). A Repulsive Force Unit for Garment Collision Handling in Neural Networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-20062-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20061-8
Online ISBN: 978-3-031-20062-5
eBook Packages: Computer ScienceComputer Science (R0)