Skip to main content

A Repulsive Force Unit for Garment Collision Handling in Neural Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13663))

Included in the following conference series:

Abstract

Despite recent success, deep learning-based methods for predicting 3D garment deformation under body motion suffer from interpenetration problems between the garment and the body. To address this problem, we propose a novel collision handling neural network layer called Repulsive Force Unit (ReFU). Based on the signed distance function (SDF) of the underlying body and the current garment vertex positions, ReFU predicts the per-vertex offsets that push any interpenetrating vertex to a collision-free configuration while preserving the fine geometric details. We show that ReFU is differentiable with trainable parameters and can be integrated into different network backbones that predict 3D garment deformations. Our experiments show that ReFU significantly reduces the number of collisions between the body and the garment and better preserves geometric details compared to prior methods based on collision loss or post-processing optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alldieck, T., Xu, H., Sminchisescu, C.: imghum: implicit generative models of 3d human shape and articulated pose. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5461–5470, October 2021

    Google Scholar 

  2. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54 (1998)

    Google Scholar 

  3. Bertiche, H., Madadi, M., Escalera, S.: CLOTH3D: clothed 3D humans. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 344–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_21

    Chapter  Google Scholar 

  4. Bertiche, H., Madadi, M., Escalera, S.: PBNS: physically based neural simulator for unsupervised garment pose space deformation. arXiv preprint arXiv:2012.11310 (2020)

  5. Bertiche, H., Madadi, M., Tylson, E., Escalera, S.: DeepSD: automatic deep skinning and pose space deformation for 3d garment animation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5471–5480 (2021)

    Google Scholar 

  6. Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3d people from images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5420–5430 (2019)

    Google Scholar 

  7. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21(3), 594–603 (2002)

    Article  Google Scholar 

  8. Brochu, T., Edwards, E., Bridson, R.: Efficient geometrically exact continuous collision detection. ACM Trans. Graph. 31(4), 96:1–96:7 (2012)

    Google Scholar 

  9. Choi, K.J., Ko, H.S.: Stable but responsive cloth. In: ACM SIGGRAPH 2005 Courses (2005)

    Google Scholar 

  10. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Aguiar, E., Sigal, L., Treuille, A., Hodgins, J.K.: Stable spaces for real-time clothing. ACM Trans. Graph. (TOG) 29(4), 1–9 (2010)

    Article  Google Scholar 

  12. Bertiche, H., Madadi, M., Escalera, S.: CLOTH3D: clothed 3D humans. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 344–359. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_21

    Chapter  Google Scholar 

  13. Fisher, S., Lin, M.C.: Fast penetration depth estimation for elastic bodies using deformed distance fields. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 1, pp. 330–336. IEEE (2001)

    Google Scholar 

  14. Govindaraju, N.K., Lin, M.C., Manocha, D.: Quick-CULLIDE: fast inter- and intra-object collision culling using graphics hardware. In: IEEE Virtual Reality Conference 2005, VR 2005, Bonn, Germany, 12–16 March 2005, pp. 59–66 (2005)

    Google Scholar 

  15. Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 62–67. Citeseer (2003)

    Google Scholar 

  16. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020)

  17. Guan, P., Reiss, L., Hirshberg, D.A., Weiss, A., Black, M.J.: Drape: dressing any person. ACM Trans. Graph. (TOG) 31(4), 1–10 (2012)

    Article  Google Scholar 

  18. Gundogdu, E., Constantin, V., Seifoddini, A., Dang, M., Salzmann, M., Fua, P.: Garnet: a two-stream network for fast and accurate 3d cloth draping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8739–8748 (2019)

    Google Scholar 

  19. Harmon, D., Vouga, E., Tamstorf, R., Grinspun, E.: Robust treatment of simultaneous collisions. ACM Trans. Graph. 27(3), 23:1–23:4 (2008)

    Google Scholar 

  20. Holden, D., Duong, B.C., Datta, S., Nowrouzezahrai, D.: Subspace neural physics: Fast data-driven interactive simulation. In: Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–12 (2019)

    Google Scholar 

  21. Kim, D., Koh, W., Narain, R., Fatahalian, K., Treuille, A., O’Brien, J.F.: Near-exhaustive precomputation of secondary cloth effects. ACM Trans. Graph. 32(4), 87:1–87:7 (2013)

    Google Scholar 

  22. Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation, and Applications, vol. 10. Springer Science & Business Media, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33287-6

    Book  MATH  Google Scholar 

  23. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  24. Ma, B., Han, Z., Liu, Y.S., Zwicker, M.: Neural-pull: Learning signed distance functions from point clouds by learning to pull space onto surfaces. arXiv preprint arXiv:2011.13495 (2020)

  25. Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Corse, Z.: Local optimization for robust signed distance field collision. Proc. ACM Comput. Graph. Interact. Techn. 3(1), 1–17 (2020)

    Article  Google Scholar 

  26. Mihajlovic, M., Zhang, Y., Black, M.J., Tang, S.: LEAP: learning articulated occupancy of people. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2021

    Google Scholar 

  27. Narain, R., Samii, A., O’Brien, J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31(6), 147:1–147:10 (2012)

    Google Scholar 

  28. Otaduy, M.A., Tamstorf, R., Steinemann, D., Gross, M.: Implicit contact handling for deformable objects. Comput. Graph. Forum 28(2), 559–568 (2009)

    Article  Google Scholar 

  29. Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision and proximity queries. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3859–3866. IEEE (2012)

    Google Scholar 

  30. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  31. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  32. Patel, C., Liao, Z., Pons-Moll, G.: TailorNet: predicting clothing in 3d as a function of human pose, shape and garment style. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7365–7375 (2020)

    Google Scholar 

  33. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3d human pose and shape from a single color image. In: CVPR, pp. 459–468 (2018)

    Google Scholar 

  34. Provot, X.: Collision and self-collision handling in cloth model dedicated to design garments. In: Thalmann, D., van de Panne, M. (eds.) Computer Animation and Simulation 1997. Eurographics, pp. 177–189. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-6874-5_13

  35. Santesteban, I., Otaduy, M.A., Casas, D.: Learning-based animation of clothing for virtual try-on. In: Computer Graphics Forum, vol. 38, pp. 355–366. Wiley Online Library (2019)

    Google Scholar 

  36. Santesteban, I., Thuerey, N., Otaduy, M.A., Casas, D.: Self-supervised collision handling via generative 3d garment models for virtual try-on. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  37. Sitzmann, V., Chan, E.R., Tucker, R., Snavely, N., Wetzstein, G.: MetaSDF: meta-learning signed distance functions. arXiv preprint arXiv:2006.09662 (2020)

  38. Tan, Q., Pan, Z., Gao, L., Manocha, D.: Realtime simulation of thin-shell deformable materials using CNN-based mesh embedding. IEEE Robot. Autom. Lett. 5(2), 2325–2332 (2020)

    Article  Google Scholar 

  39. Tan, Q., Pan, Z., Manocha, D.: Lcollision: Fast generation of collision-free human poses using learned non-penetration constraints. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI (2021)

    Google Scholar 

  40. Tan, Q., Pan, Z., Smith, B., Shiratori, T., Manocha, D.: Active learning of neural collision handler for complex 3d mesh deformations (2021)

    Google Scholar 

  41. Tang, M., Tong, R., Wang, Z., Manocha, D.: Fast and exact continuous collision detection with Bernstein sign classification. ACM Trans. Graph. (SIGGRAPH Asia). 33, 186:1–186:8 (2014)

    Google Scholar 

  42. Tang, M., Wang, T., Liu, Z., Tong, R., Manocha, D.: I-Cloth: Incremental collision handling for GPU-based interactive cloth simulation. ACM Trans. Graph. 37(6), 204:1–204:10 (2018)

    Google Scholar 

  43. Teng, Y., Otaduy, M.A., Kim, T.: Simulating articulated subspace self-contact. ACM Trans. Graph. (TOG) 33(4), 1–9 (2014)

    Article  Google Scholar 

  44. Wang, H.: Defending continuous collision detection against errors. ACM Trans. Graph. (SIGGRAPH). 33(4), 122:1–122:10 (2014)

    Google Scholar 

  45. Wang, T.Y., Ceylan, D., Popovic, J., Mitra, N.J.: Learning a shared shape space for multimodal garment design. ACM Trans. Graph. 37(6), 1:1–1:14 (2018). https://doi.org/10.1145/3272127.3275074

  46. Zheng, H., Yang, Z., Liu, W., Liang, J., Li, Y.: Improving deep neural networks using softplus units. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–4 (2015). https://doi.org/10.1109/IJCNN.2015.7280459

  47. Zhou, Y., et al.: Fully convolutional mesh autoencoder using efficient spatially varying kernels. arXiv preprint arXiv:2006.04325 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyang Tan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 849 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, Q., Zhou, Y., Wang, T., Ceylan, D., Sun, X., Manocha, D. (2022). A Repulsive Force Unit for Garment Collision Handling in Neural Networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20062-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20061-8

  • Online ISBN: 978-3-031-20062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics