Abstract
With the maturity of depth sensors, point clouds have received increasing attention in various applications such as autonomous driving, robotics, surveillance, etc., while deep point cloud learning models have shown to be vulnerable to adversarial attacks. Existing attack methods generally add/delete points or perform point-wise perturbation over point clouds to generate adversarial examples in the data space, which may neglect the geometric characteristics of point clouds. Instead, we propose point cloud attacks from a new perspective—Graph Spectral Domain Attack (GSDA), aiming to perturb transform coefficients in the graph spectral domain that corresponds to varying certain geometric structure. In particular, we naturally represent a point cloud over a graph, and adaptively transform the coordinates of points into the graph spectral domain via graph Fourier transform (GFT) for compact representation. We then analyze the influence of different spectral bands on the geometric structure of the point cloud, based on which we propose to perturb the GFT coefficients in a learnable manner guided by an energy constraint loss function. Finally, the adversarial point cloud is generated by transforming the perturbed spectral representation back to the data domain via the inverse GFT (IGFT). Experimental results demonstrate the effectiveness of the proposed GSDA in terms of both imperceptibility and attack success rates under a variety of defense strategies. The code is available at https://github.com/WoodwindHu/GSDA.
Q. Hu and D. Liu—Contributed equally to this work.
This work was supported by National Natural Science Foundation of China under Contract No. 61972009.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. arXiv preprint arXiv:1803.10091 (2018)
Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)
Chen, S., Tian, D., Feng, C., Vetro, A., Kovačević, J.: Fast resampling of three-dimensional point clouds via graphs. IEEE Trans. Sig. Process. 66(3), 666–681 (2017)
Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1907–1915 (2017)
Choi, J., Han, B.: Task-aware quantization network for JPEG image compression. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 309–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_19
Chung, F.R., Graham, F.C.: Spectral Graph Theory, vol. 92. American Mathematical Society (1997)
Cortes, C., Mohri, M., Rostamizadeh, A.: L2 regularization for learning kernels. arXiv preprint arXiv:1205.2653 (2012)
Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9185–9193 (2018)
Duan, Y., Zheng, Y., Lu, J., Zhou, J., Tian, Q.: Structural relational reasoning of point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 949–958 (2019)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 605–613 (2017)
Gao, X., Hu, W., Qi, G.J.: GraphTER: unsupervised learning of graph transformation equivariant representations via auto-encoding node-wise transformations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7163–7172 (2020)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9224–9232 (2018)
Hamdi, A., Rojas, S., Thabet, A., Ghanem, B.: AdvPC: transferable adversarial perturbations on 3D point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 241–257. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_15
Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmonic Anal. 30(2), 129–150 (2011)
Hu, W., Cheung, G., Li, X., Au, O.: Depth map compression using multi-resolution graph-based transform for depth-image-based rendering. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1297–1300 (2012)
Hu, W., Cheung, G., Ortega, A.: Intra-prediction and generalized graph Fourier transform for image coding. IEEE Sig. Process. Lett. 22(11), 1913–1917 (2015)
Hu, W., Cheung, G., Ortega, A., Au, O.C.: Multiresolution graph Fourier transform for compression of piecewise smooth images. IEEE Trans. Image Process. 24(1), 419–433 (2015)
Hu, W., Pang, J., Liu, X., Tian, D., Lin, C.W., Vetro, A.: Graph signal processing for geometric data and beyond: theory and applications. IEEE Trans. Multimedia (2021)
Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236 (2016)
Li, M., Zuo, W., Gu, S., Zhao, D., Zhang, D.: Learning convolutional networks for content-weighted image compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3214–3223 (2018)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: Advances in Neural Information Processing Systems (NIPS), vol. 31, pp. 820–830 (2018)
Liu, D., Hu, W.: Imperceptible transfer attack and defense on 3D point cloud classification. arXiv preprint arXiv:2111.10990 (2021)
Liu, D., Yu, R., Su, H.: Extending adversarial attacks and defenses to deep 3D point cloud classifiers. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2279–2283 (2019)
Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: DensePoint: learning densely contextual representation for efficient point cloud processing. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5239–5248 (2019)
Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8895–8904 (2019)
Ma, C., Meng, W., Wu, B., Xu, S., Zhang, X.: Efficient joint gradient based attack against SOR defense for 3D point cloud classification. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1819–1827 (2020)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1765–1773 (2017)
Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2574–2582 (2016)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems (NIPS) (2017)
Ramasinghe, S., Khan, S., Barnes, N., Gould, S.: Spectral-GANs for high-resolution 3D point-cloud generation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8169–8176. IEEE (2020)
Rosman, G., Dubrovina, A., Kimmel, R.: Patch-collaborative spectral point-cloud denoising. In: Computer Graphics Forum, vol. 32, pp. 1–12. Wiley (2013)
Shen, G., Kim, W.S., Narang, S.K., Ortega, A., Lee, J., Wey, H.: Edge-adaptive transforms for efficient depth map coding. In: Proceedings of the Picture Coding Symposium, pp. 566–569 (2010)
Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4548–4557 (2018)
Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)
Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3693–3702 (2017)
Singh, S.P., Wang, L., Gupta, S., Goli, H., Padmanabhan, P., Gulyás, B.: 3D deep learning on medical images: a review. Sensors 20(18), 5097 (2020)
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 945–953 (2015)
Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 6411–6420 (2019)
Tsai, T., Yang, K., Ho, T.Y., Jin, Y.: Robust adversarial objects against deep learning models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 954–962 (2020)
Tu, C.C., et al.: AutoZOOM: autoencoder-based zeroth order optimization method for attacking black-box neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 742–749 (2019)
Wang, W., Yu, R., Huang, Q., Neumann, U.: SGPN: similarity group proposal network for 3D point cloud instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2569–2578 (2018)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)
Wen, Y., Lin, J., Chen, K., Chen, C.P., Jia, K.: Geometry-aware generation of adversarial point clouds. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)
Wicker, M., Kwiatkowska, M.: Robustness of 3D deep learning in an adversarial setting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11767–11775 (2019)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920 (2015)
Wu, Z., Duan, Y., Wang, H., Fan, Q., Guibas, L.J.: IF-defense: 3D adversarial point cloud defense via implicit function based restoration. arXiv preprint arXiv:2010.05272 (2020)
Xiang, C., Qi, C.R., Li, B.: Generating 3D adversarial point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9136–9144 (2019)
Xu, Q., Sun, X., Wu, C.Y., Wang, P., Neumann, U.: Grid-GCN for fast and scalable point cloud learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5661–5670 (2020)
Xu, Y., et al.: Predictive generalized graph Fourier transform for attribute compression of dynamic point clouds. arXiv preprint arXiv:1908.01970 (2019)
Yang, B., et al.: Learning object bounding boxes for 3D instance segmentation on point clouds. arXiv preprint arXiv:1906.01140 (2019)
Yang, J., et al.: Modeling point clouds with self-attention and Gumbel subset sampling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3323–3332 (2019)
Yu, T., Meng, J., Yuan, J.: Multi-view harmonized bilinear network for 3D object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 186–194 (2018)
Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Advances in Neural Information Processing Systems (NIPS), vol. 30 (2017)
Zhang, C., Florencio, D., Loop, C.: Point cloud attribute compression with graph transform. In: Proceedings of the IEEE International Conference on Image Processing, pp. 2066–2070 (2014)
Zhang, Q., Yang, J., Fang, R., Ni, B., Liu, J., Tian, Q.: Adversarial attack and defense on point sets. arXiv preprint arXiv:1902.10899 (2019)
Zhang, S., Cui, S., Ding, Z.: Hypergraph spectral analysis and processing in 3D point cloud. IEEE Trans. Image Process. 30, 1193–1206 (2020)
Zhang, Y., Liang, G., Salem, T., Jacobs, N.: Defense-PointNet: protecting PointNet against adversarial attacks. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5654–5660 (2019)
Zhao, Y., Wu, Y., Chen, C., Lim, A.: On isometry robustness of deep 3D point cloud models under adversarial attacks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1201–1210 (2020)
Zheng, T., Chen, C., Yuan, J., Li, B., Ren, K.: PointCloud saliency maps. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1598–1606 (2019)
Zhou, H., et al.: LG-GAN: label guided adversarial network for flexible targeted attack of point cloud based deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10356–10365 (2020)
Zhou, H., Chen, K., Zhang, W., Fang, H., Zhou, W., Yu, N.: DUP-Net: denoiser and Upsampler network for 3D adversarial point clouds defense. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1961–1970 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, Q., Liu, D., Hu, W. (2022). Exploring the Devil in Graph Spectral Domain for 3D Point Cloud Attacks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-20062-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20061-8
Online ISBN: 978-3-031-20062-5
eBook Packages: Computer ScienceComputer Science (R0)