Skip to main content

Exploring the Devil in Graph Spectral Domain for 3D Point Cloud Attacks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13663))

Included in the following conference series:

Abstract

With the maturity of depth sensors, point clouds have received increasing attention in various applications such as autonomous driving, robotics, surveillance, etc., while deep point cloud learning models have shown to be vulnerable to adversarial attacks. Existing attack methods generally add/delete points or perform point-wise perturbation over point clouds to generate adversarial examples in the data space, which may neglect the geometric characteristics of point clouds. Instead, we propose point cloud attacks from a new perspective—Graph Spectral Domain Attack (GSDA), aiming to perturb transform coefficients in the graph spectral domain that corresponds to varying certain geometric structure. In particular, we naturally represent a point cloud over a graph, and adaptively transform the coordinates of points into the graph spectral domain via graph Fourier transform (GFT) for compact representation. We then analyze the influence of different spectral bands on the geometric structure of the point cloud, based on which we propose to perturb the GFT coefficients in a learnable manner guided by an energy constraint loss function. Finally, the adversarial point cloud is generated by transforming the perturbed spectral representation back to the data domain via the inverse GFT (IGFT). Experimental results demonstrate the effectiveness of the proposed GSDA in terms of both imperceptibility and attack success rates under a variety of defense strategies. The code is available at https://github.com/WoodwindHu/GSDA.

Q. Hu and D. Liu—Contributed equally to this work.

This work was supported by National Natural Science Foundation of China under Contract No. 61972009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. arXiv preprint arXiv:1803.10091 (2018)

  2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

    Google Scholar 

  3. Chen, S., Tian, D., Feng, C., Vetro, A., Kovačević, J.: Fast resampling of three-dimensional point clouds via graphs. IEEE Trans. Sig. Process. 66(3), 666–681 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1907–1915 (2017)

    Google Scholar 

  5. Choi, J., Han, B.: Task-aware quantization network for JPEG image compression. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 309–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_19

    Chapter  Google Scholar 

  6. Chung, F.R., Graham, F.C.: Spectral Graph Theory, vol. 92. American Mathematical Society (1997)

    Google Scholar 

  7. Cortes, C., Mohri, M., Rostamizadeh, A.: L2 regularization for learning kernels. arXiv preprint arXiv:1205.2653 (2012)

  8. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9185–9193 (2018)

    Google Scholar 

  9. Duan, Y., Zheng, Y., Lu, J., Zhou, J., Tian, Q.: Structural relational reasoning of point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 949–958 (2019)

    Google Scholar 

  10. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 605–613 (2017)

    Google Scholar 

  11. Gao, X., Hu, W., Qi, G.J.: GraphTER: unsupervised learning of graph transformation equivariant representations via auto-encoding node-wise transformations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7163–7172 (2020)

    Google Scholar 

  12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  13. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9224–9232 (2018)

    Google Scholar 

  14. Hamdi, A., Rojas, S., Thabet, A., Ghanem, B.: AdvPC: transferable adversarial perturbations on 3D point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 241–257. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_15

    Chapter  Google Scholar 

  15. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmonic Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, W., Cheung, G., Li, X., Au, O.: Depth map compression using multi-resolution graph-based transform for depth-image-based rendering. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1297–1300 (2012)

    Google Scholar 

  17. Hu, W., Cheung, G., Ortega, A.: Intra-prediction and generalized graph Fourier transform for image coding. IEEE Sig. Process. Lett. 22(11), 1913–1917 (2015)

    Article  Google Scholar 

  18. Hu, W., Cheung, G., Ortega, A., Au, O.C.: Multiresolution graph Fourier transform for compression of piecewise smooth images. IEEE Trans. Image Process. 24(1), 419–433 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, W., Pang, J., Liu, X., Tian, D., Lin, C.W., Vetro, A.: Graph signal processing for geometric data and beyond: theory and applications. IEEE Trans. Multimedia (2021)

    Google Scholar 

  20. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236 (2016)

  23. Li, M., Zuo, W., Gu, S., Zhao, D., Zhang, D.: Learning convolutional networks for content-weighted image compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3214–3223 (2018)

    Google Scholar 

  24. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: Advances in Neural Information Processing Systems (NIPS), vol. 31, pp. 820–830 (2018)

    Google Scholar 

  25. Liu, D., Hu, W.: Imperceptible transfer attack and defense on 3D point cloud classification. arXiv preprint arXiv:2111.10990 (2021)

  26. Liu, D., Yu, R., Su, H.: Extending adversarial attacks and defenses to deep 3D point cloud classifiers. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2279–2283 (2019)

    Google Scholar 

  27. Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: DensePoint: learning densely contextual representation for efficient point cloud processing. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5239–5248 (2019)

    Google Scholar 

  28. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8895–8904 (2019)

    Google Scholar 

  29. Ma, C., Meng, W., Wu, B., Xu, S., Zhang, X.: Efficient joint gradient based attack against SOR defense for 3D point cloud classification. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1819–1827 (2020)

    Google Scholar 

  30. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  31. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1765–1773 (2017)

    Google Scholar 

  32. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2574–2582 (2016)

    Google Scholar 

  33. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)

    Google Scholar 

  34. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  35. Ramasinghe, S., Khan, S., Barnes, N., Gould, S.: Spectral-GANs for high-resolution 3D point-cloud generation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8169–8176. IEEE (2020)

    Google Scholar 

  36. Rosman, G., Dubrovina, A., Kimmel, R.: Patch-collaborative spectral point-cloud denoising. In: Computer Graphics Forum, vol. 32, pp. 1–12. Wiley (2013)

    Google Scholar 

  37. Shen, G., Kim, W.S., Narang, S.K., Ortega, A., Lee, J., Wey, H.: Edge-adaptive transforms for efficient depth map coding. In: Proceedings of the Picture Coding Symposium, pp. 566–569 (2010)

    Google Scholar 

  38. Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4548–4557 (2018)

    Google Scholar 

  39. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  40. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3693–3702 (2017)

    Google Scholar 

  41. Singh, S.P., Wang, L., Gupta, S., Goli, H., Padmanabhan, P., Gulyás, B.: 3D deep learning on medical images: a review. Sensors 20(18), 5097 (2020)

    Article  Google Scholar 

  42. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 945–953 (2015)

    Google Scholar 

  43. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  44. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 6411–6420 (2019)

    Google Scholar 

  45. Tsai, T., Yang, K., Ho, T.Y., Jin, Y.: Robust adversarial objects against deep learning models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 954–962 (2020)

    Google Scholar 

  46. Tu, C.C., et al.: AutoZOOM: autoencoder-based zeroth order optimization method for attacking black-box neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 742–749 (2019)

    Google Scholar 

  47. Wang, W., Yu, R., Huang, Q., Neumann, U.: SGPN: similarity group proposal network for 3D point cloud instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2569–2578 (2018)

    Google Scholar 

  48. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  49. Wen, Y., Lin, J., Chen, K., Chen, C.P., Jia, K.: Geometry-aware generation of adversarial point clouds. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)

    Google Scholar 

  50. Wicker, M., Kwiatkowska, M.: Robustness of 3D deep learning in an adversarial setting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11767–11775 (2019)

    Google Scholar 

  51. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920 (2015)

    Google Scholar 

  52. Wu, Z., Duan, Y., Wang, H., Fan, Q., Guibas, L.J.: IF-defense: 3D adversarial point cloud defense via implicit function based restoration. arXiv preprint arXiv:2010.05272 (2020)

  53. Xiang, C., Qi, C.R., Li, B.: Generating 3D adversarial point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9136–9144 (2019)

    Google Scholar 

  54. Xu, Q., Sun, X., Wu, C.Y., Wang, P., Neumann, U.: Grid-GCN for fast and scalable point cloud learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5661–5670 (2020)

    Google Scholar 

  55. Xu, Y., et al.: Predictive generalized graph Fourier transform for attribute compression of dynamic point clouds. arXiv preprint arXiv:1908.01970 (2019)

  56. Yang, B., et al.: Learning object bounding boxes for 3D instance segmentation on point clouds. arXiv preprint arXiv:1906.01140 (2019)

  57. Yang, J., et al.: Modeling point clouds with self-attention and Gumbel subset sampling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3323–3332 (2019)

    Google Scholar 

  58. Yu, T., Meng, J., Yuan, J.: Multi-view harmonized bilinear network for 3D object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 186–194 (2018)

    Google Scholar 

  59. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Advances in Neural Information Processing Systems (NIPS), vol. 30 (2017)

    Google Scholar 

  60. Zhang, C., Florencio, D., Loop, C.: Point cloud attribute compression with graph transform. In: Proceedings of the IEEE International Conference on Image Processing, pp. 2066–2070 (2014)

    Google Scholar 

  61. Zhang, Q., Yang, J., Fang, R., Ni, B., Liu, J., Tian, Q.: Adversarial attack and defense on point sets. arXiv preprint arXiv:1902.10899 (2019)

  62. Zhang, S., Cui, S., Ding, Z.: Hypergraph spectral analysis and processing in 3D point cloud. IEEE Trans. Image Process. 30, 1193–1206 (2020)

    Article  MathSciNet  Google Scholar 

  63. Zhang, Y., Liang, G., Salem, T., Jacobs, N.: Defense-PointNet: protecting PointNet against adversarial attacks. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5654–5660 (2019)

    Google Scholar 

  64. Zhao, Y., Wu, Y., Chen, C., Lim, A.: On isometry robustness of deep 3D point cloud models under adversarial attacks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1201–1210 (2020)

    Google Scholar 

  65. Zheng, T., Chen, C., Yuan, J., Li, B., Ren, K.: PointCloud saliency maps. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1598–1606 (2019)

    Google Scholar 

  66. Zhou, H., et al.: LG-GAN: label guided adversarial network for flexible targeted attack of point cloud based deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10356–10365 (2020)

    Google Scholar 

  67. Zhou, H., Chen, K., Zhang, W., Fang, H., Zhou, W., Yu, N.: DUP-Net: denoiser and Upsampler network for 3D adversarial point clouds defense. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1961–1970 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Q., Liu, D., Hu, W. (2022). Exploring the Devil in Graph Spectral Domain for 3D Point Cloud Attacks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20062-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20061-8

  • Online ISBN: 978-3-031-20062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics