Abstract
We explore semantic correspondence estimation through the lens of unsupervised learning. We thoroughly evaluate several recently proposed unsupervised methods across multiple challenging datasets using a standardized evaluation protocol where we vary factors such as the backbone architecture, the pre-training strategy, and the pre-training and finetuning datasets. To better understand the failure modes of these methods, and in order to provide a clearer path for improvement, we provide a new diagnostic framework along with a new performance metric that is better suited to the semantic matching task. Finally, we introduce a new unsupervised correspondence approach which utilizes the strength of pre-trained features while encouraging better matches during training. This results in significantly better matching performance compared to current state-of-the-art methods.
Keywords
- Semantic correspondence
- Self-supervised learning
This is a preview of subscription content, access via your institution.
Buying options




References
Alwassel, H., Caba Heilbron, F., Escorcia, V., Ghanem, B.: Diagnosing error in temporal action detectors. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 264–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_16
Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep ViT features as dense visual descriptors. arXiv:2112.05814 (2021)
Araslanov, N., Schaub-Meyer, S., Roth, S.: Dense unsupervised learning for video segmentation. In: NeurIPS (2021)
Banik, P., Li, L., Dong, X.: A novel dataset for keypoint detection of quadruped animals from images. arXiv:2108.13958 (2021)
Biggs, B., Boyne, O., Charles, J., Fitzgibbon, A., Cipolla, R.: Who left the dogs out? 3D animal reconstruction with expectation maximization in the loop. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 195–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_12
Bristow, H., Valmadre, J., Lucey, S.: Dense semantic correspondence where every pixel is a classifier. In: ICCV, pp. 4024–4031 (2015)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv:2003.04297 (2020)
Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. arXiv:2104.02057 (2021)
Cheng, Z., Su, J.C., Maji, S.: On equivariant and invariant learning of object landmark representations. In: ICCV (2021)
Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., Kim, S.: CATs: cost aggregation transformers for visual correspondence. In: NeurIPS (2021)
Choe, J., Oh, S.J., Lee, S., Chun, S., Akata, Z., Shim, H.: Evaluating weakly supervised object localization methods right. In: CVPR, pp. 3133–3142 (2020)
Choy, C.B., Gwak, J., Savarese, S., Chandraker, M.: Universal correspondence network. In: NeurIPS (2016)
David, M.: The correspondence theory of truth. In: The Oxford Handbook of Truth (2016)
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. IJCV 111, 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5
Gonzalez-Garcia, A., Modolo, D., Ferrari, V.: Do semantic parts emerge in convolutional neural networks? IJCV 126(5), 476–494 (2017). https://doi.org/10.1007/s11263-017-1048-0
Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS (2020)
Ham, B., Cho, M., Schmid, C., Ponce, J.: Proposal flow. In: CVPR (2016)
Han, K., et al.: SCNet: learning semantic correspondence. In: ICCV, pp. 1831–1840 (2017)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_25
Huang, S., Wang, Q., Zhang, S., Yan, S., He, X.: Dynamic context correspondence network for semantic alignment. In: ICCV, pp. 2010–2019 (2019)
Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks through conditional image generation. In: NeurIPS (2018)
Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Self-supervised learning of interpretable keypoints from unlabelled videos. In: CVPR (2020)
Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., Yi, K.M.: COTR: correspondence transformer for matching across images. In: ICCV, pp. 6207–6217 (2021)
Kanazawa, A., Jacobs, D.W., Chandraker, M.: WarpNet: weakly supervised matching for single-view reconstruction. In: CVPR (2016)
Karmali, T., Atrishi, A., Harsha, S.S., Agrawal, S., Jampani, V., Babu, R.V.: LEAD: self-supervised landmark estimation by aligning distributions of feature similarity. In: WACV (2022)
Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: stanford dogs. In: CVPR Workshop on Fine-Grained Visual Categorization (2011)
Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: CVPR, pp. 2307–2314 (2013)
Kim, S., Lin, S., Jeon, S.R., Min, D., Sohn, K.: Recurrent transformer networks for semantic correspondence. In: NeurIPS (2018)
Kim, S., Min, D., Ham, B., Jeon, S., Lin, S., Sohn, K.: FCSS: fully convolutional self-similarity for dense semantic correspondence. In: CVPR, pp. 6560–6569 (2017)
Koestinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: ICCV Workshops (2011)
Kolesnikov, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. In: ICLR (2021)
Kulkarni, T.D., et al.: Unsupervised learning of object keypoints for perception and control. In: NeurIPS (2019)
Lee, J.Y., DeGol, J., Fragoso, V., Sinha, S.N.: Patchmatch-based neighborhood consensus for semantic correspondence. In: CVPR, pp. 13153–13163 (2021)
Lee, J., Kim, D., Ponce, J., Ham, B.: SFNet: learning object-aware semantic correspondence. In: CVPR, pp. 2278–2287 (2019)
Li, S., Han, K., Costain, T.W., Howard-Jenkins, H., Prisacariu, V.: Correspondence networks with adaptive neighbourhood consensus. In: CVPR, pp. 10196–10205 (2020)
Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. PAMI 33(5), 978–994 (2010)
Liu, Y., Zhu, L., Yamada, M., Yang, Y.: Semantic correspondence as an optimal transport problem. In: CVPR, pp. 4463–4472 (2020)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)
Long, J.L., Zhang, N., Darrell, T.: Do convnets learn correspondence? In: NeurIPS (2014)
Min, J., Cho, M.: Convolutional hough matching networks. In: CVPR (2021)
Min, J., Lee, J., Ponce, J., Cho, M.: Hyperpixel flow: semantic correspondence with multi-layer neural features. In: ICCV (2019)
Min, J., Lee, J., Ponce, J., Cho, M.: SPair-71k: a large-scale benchmark for semantic correspondence. arXiv:1908.10543 (2019)
Min, J., Lee, J., Ponce, J., Cho, M.: Learning to compose hypercolumns for visual correspondence. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 346–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_21
Musgrave, K., Belongie, S., Lim, S.-N.: A metric learning reality check. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 681–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_41
Pinheiro, P.O.O., Almahairi, A., Benmalek, R., Golemo, F., Courville, A.C.: Unsupervised learning of dense visual representations. In: NeurIPS (2020)
Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv:1807.03748 (2018)
Rocco, I., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for geometric matching. In: CVPR, pp. 6148–6157 (2017)
Rocco, I., Arandjelović, R., Sivic, J.: Efficient neighbourhood consensus networks via submanifold sparse convolutions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 605–621. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_35
Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbourhood consensus networks. In: NeurIPS (2018)
Roh, B., Shin, W., Kim, I., Kim, S.: Spatially consistent representation learning. In: CVPR, pp. 1144–1153 (2021)
Ruggero Ronchi, M., Perona, P.: Benchmarking and error diagnosis in multi-instance pose estimation. In: ICCV (2017)
Russakovsky, O., Deng, J., Huang, Z., Berg, A.C., Fei-Fei, L.: Detecting avocados to Zucchinis: what have we done, and where are we going? In: ICCV (2013)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Ryou, S., Perona, P.: Weakly supervised keypoint discovery. arXiv:2109.13423 (2021)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: CVPR, pp. 4938–4947 (2020)
Sigurdsson, G.A., Russakovsky, O., Gupta, A.: What actions are needed for understanding human actions in videos? In: ICCV, pp. 2137–2146 (2017)
Thewlis, J., Albanie, S., Bilen, H., Vedaldi, A.: Unsupervised learning of landmarks by descriptor vector exchange. In: ICCV (2019)
Thewlis, J., Bilen, H., Vedaldi, A.: Unsupervised learning of object frames by dense equivariant image labelling. In: NeurIPS (2017)
Thewlis, J., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks by factorized spatial embeddings. In: ICCV (2017)
Ufer, N., Ommer, B.: Deep semantic feature matching. In: CVPR, pp. 6914–6923 (2017)
Van Horn, G., Cole, E., Beery, S., Wilber, K., Belongie, S., Mac Aodha, O.: Benchmarking representation learning for natural world image collections. In: CVPR (2021)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset (2011)
Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: CVPR, pp. 3024–3033 (2021)
Wang, Z., et al.: Exploring set similarity for dense self-supervised representation learning. arXiv:2107.08712 (2021)
Wei, F., Gao, Y., Wu, Z., Hu, H., Lin, S.: Aligning pretraining for detection via object-level contrastive learning. In: NeurIPS (2021)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)
Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. PAMI 41(9), 2251–2265 (2018)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B.: How far are we from solving pedestrian detection? In: CVPR, pp. 1259–1267 (2016)
Zhang, Y., Guo, Y., Jin, Y., Luo, Y., He, Z., Lee, H.: Unsupervised discovery of object landmarks as structural representations. In: CVPR (2018)
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. PAMI 38(5), 918–930 (2015)
Zhao, D., Song, Z., Ji, Z., Zhao, G., Ge, W., Yu, Y.: Multi-scale matching networks for semantic correspondence. In: ICCV, pp. 3354–3364 (2021)
Zhong, Y., Yuan, B., Wu, H., Yuan, Z., Peng, J., Wang, Y.X.: Pixel contrastive-consistent semi-supervised semantic segmentation. In: ICCV, pp. 7273–7282 (2021)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)
Acknowledgements
Thanks to Hakan Bilen and Omiros Pantazis for their valuable feedback. This work was in part supported by the Turing 2.0 ‘Enabling Advanced Autonomy’ project funded by the EPSRC and the Alan Turing Institute.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aygün, M., Mac Aodha, O. (2022). Demystifying Unsupervised Semantic Correspondence Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-20056-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20055-7
Online ISBN: 978-3-031-20056-4
eBook Packages: Computer ScienceComputer Science (R0)