Skip to main content

Demystifying Unsupervised Semantic Correspondence Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13690))

Included in the following conference series:

Abstract

We explore semantic correspondence estimation through the lens of unsupervised learning. We thoroughly evaluate several recently proposed unsupervised methods across multiple challenging datasets using a standardized evaluation protocol where we vary factors such as the backbone architecture, the pre-training strategy, and the pre-training and finetuning datasets. To better understand the failure modes of these methods, and in order to provide a clearer path for improvement, we provide a new diagnostic framework along with a new performance metric that is better suited to the semantic matching task. Finally, we introduce a new unsupervised correspondence approach which utilizes the strength of pre-trained features while encouraging better matches during training. This results in significantly better matching performance compared to current state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alwassel, H., Caba Heilbron, F., Escorcia, V., Ghanem, B.: Diagnosing error in temporal action detectors. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 264–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_16

    Chapter  Google Scholar 

  2. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep ViT features as dense visual descriptors. arXiv:2112.05814 (2021)

  3. Araslanov, N., Schaub-Meyer, S., Roth, S.: Dense unsupervised learning for video segmentation. In: NeurIPS (2021)

    Google Scholar 

  4. Banik, P., Li, L., Dong, X.: A novel dataset for keypoint detection of quadruped animals from images. arXiv:2108.13958 (2021)

  5. Biggs, B., Boyne, O., Charles, J., Fitzgibbon, A., Cipolla, R.: Who left the dogs out? 3D animal reconstruction with expectation maximization in the loop. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 195–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_12

    Chapter  Google Scholar 

  6. Bristow, H., Valmadre, J., Lucey, S.: Dense semantic correspondence where every pixel is a classifier. In: ICCV, pp. 4024–4031 (2015)

    Google Scholar 

  7. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  9. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv:2003.04297 (2020)

  10. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. arXiv:2104.02057 (2021)

  11. Cheng, Z., Su, J.C., Maji, S.: On equivariant and invariant learning of object landmark representations. In: ICCV (2021)

    Google Scholar 

  12. Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., Kim, S.: CATs: cost aggregation transformers for visual correspondence. In: NeurIPS (2021)

    Google Scholar 

  13. Choe, J., Oh, S.J., Lee, S., Chun, S., Akata, Z., Shim, H.: Evaluating weakly supervised object localization methods right. In: CVPR, pp. 3133–3142 (2020)

    Google Scholar 

  14. Choy, C.B., Gwak, J., Savarese, S., Chandraker, M.: Universal correspondence network. In: NeurIPS (2016)

    Google Scholar 

  15. David, M.: The correspondence theory of truth. In: The Oxford Handbook of Truth (2016)

    Google Scholar 

  16. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. IJCV 111, 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  17. Gonzalez-Garcia, A., Modolo, D., Ferrari, V.: Do semantic parts emerge in convolutional neural networks? IJCV 126(5), 476–494 (2017). https://doi.org/10.1007/s11263-017-1048-0

    Article  MathSciNet  Google Scholar 

  18. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS (2020)

    Google Scholar 

  19. Ham, B., Cho, M., Schmid, C., Ponce, J.: Proposal flow. In: CVPR (2016)

    Google Scholar 

  20. Han, K., et al.: SCNet: learning semantic correspondence. In: ICCV, pp. 1831–1840 (2017)

    Google Scholar 

  21. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  23. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_25

    Chapter  Google Scholar 

  24. Huang, S., Wang, Q., Zhang, S., Yan, S., He, X.: Dynamic context correspondence network for semantic alignment. In: ICCV, pp. 2010–2019 (2019)

    Google Scholar 

  25. Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks through conditional image generation. In: NeurIPS (2018)

    Google Scholar 

  26. Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Self-supervised learning of interpretable keypoints from unlabelled videos. In: CVPR (2020)

    Google Scholar 

  27. Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., Yi, K.M.: COTR: correspondence transformer for matching across images. In: ICCV, pp. 6207–6217 (2021)

    Google Scholar 

  28. Kanazawa, A., Jacobs, D.W., Chandraker, M.: WarpNet: weakly supervised matching for single-view reconstruction. In: CVPR (2016)

    Google Scholar 

  29. Karmali, T., Atrishi, A., Harsha, S.S., Agrawal, S., Jampani, V., Babu, R.V.: LEAD: self-supervised landmark estimation by aligning distributions of feature similarity. In: WACV (2022)

    Google Scholar 

  30. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: stanford dogs. In: CVPR Workshop on Fine-Grained Visual Categorization (2011)

    Google Scholar 

  31. Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: CVPR, pp. 2307–2314 (2013)

    Google Scholar 

  32. Kim, S., Lin, S., Jeon, S.R., Min, D., Sohn, K.: Recurrent transformer networks for semantic correspondence. In: NeurIPS (2018)

    Google Scholar 

  33. Kim, S., Min, D., Ham, B., Jeon, S., Lin, S., Sohn, K.: FCSS: fully convolutional self-similarity for dense semantic correspondence. In: CVPR, pp. 6560–6569 (2017)

    Google Scholar 

  34. Koestinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: ICCV Workshops (2011)

    Google Scholar 

  35. Kolesnikov, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  36. Kulkarni, T.D., et al.: Unsupervised learning of object keypoints for perception and control. In: NeurIPS (2019)

    Google Scholar 

  37. Lee, J.Y., DeGol, J., Fragoso, V., Sinha, S.N.: Patchmatch-based neighborhood consensus for semantic correspondence. In: CVPR, pp. 13153–13163 (2021)

    Google Scholar 

  38. Lee, J., Kim, D., Ponce, J., Ham, B.: SFNet: learning object-aware semantic correspondence. In: CVPR, pp. 2278–2287 (2019)

    Google Scholar 

  39. Li, S., Han, K., Costain, T.W., Howard-Jenkins, H., Prisacariu, V.: Correspondence networks with adaptive neighbourhood consensus. In: CVPR, pp. 10196–10205 (2020)

    Google Scholar 

  40. Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. PAMI 33(5), 978–994 (2010)

    Article  Google Scholar 

  41. Liu, Y., Zhu, L., Yamada, M., Yang, Y.: Semantic correspondence as an optimal transport problem. In: CVPR, pp. 4463–4472 (2020)

    Google Scholar 

  42. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  43. Long, J.L., Zhang, N., Darrell, T.: Do convnets learn correspondence? In: NeurIPS (2014)

    Google Scholar 

  44. Min, J., Cho, M.: Convolutional hough matching networks. In: CVPR (2021)

    Google Scholar 

  45. Min, J., Lee, J., Ponce, J., Cho, M.: Hyperpixel flow: semantic correspondence with multi-layer neural features. In: ICCV (2019)

    Google Scholar 

  46. Min, J., Lee, J., Ponce, J., Cho, M.: SPair-71k: a large-scale benchmark for semantic correspondence. arXiv:1908.10543 (2019)

  47. Min, J., Lee, J., Ponce, J., Cho, M.: Learning to compose hypercolumns for visual correspondence. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 346–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_21

    Chapter  Google Scholar 

  48. Musgrave, K., Belongie, S., Lim, S.-N.: A metric learning reality check. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 681–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_41

    Chapter  Google Scholar 

  49. Pinheiro, P.O.O., Almahairi, A., Benmalek, R., Golemo, F., Courville, A.C.: Unsupervised learning of dense visual representations. In: NeurIPS (2020)

    Google Scholar 

  50. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv:1807.03748 (2018)

  51. Rocco, I., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for geometric matching. In: CVPR, pp. 6148–6157 (2017)

    Google Scholar 

  52. Rocco, I., Arandjelović, R., Sivic, J.: Efficient neighbourhood consensus networks via submanifold sparse convolutions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 605–621. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_35

    Chapter  Google Scholar 

  53. Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbourhood consensus networks. In: NeurIPS (2018)

    Google Scholar 

  54. Roh, B., Shin, W., Kim, I., Kim, S.: Spatially consistent representation learning. In: CVPR, pp. 1144–1153 (2021)

    Google Scholar 

  55. Ruggero Ronchi, M., Perona, P.: Benchmarking and error diagnosis in multi-instance pose estimation. In: ICCV (2017)

    Google Scholar 

  56. Russakovsky, O., Deng, J., Huang, Z., Berg, A.C., Fei-Fei, L.: Detecting avocados to Zucchinis: what have we done, and where are we going? In: ICCV (2013)

    Google Scholar 

  57. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  58. Ryou, S., Perona, P.: Weakly supervised keypoint discovery. arXiv:2109.13423 (2021)

  59. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: CVPR, pp. 4938–4947 (2020)

    Google Scholar 

  60. Sigurdsson, G.A., Russakovsky, O., Gupta, A.: What actions are needed for understanding human actions in videos? In: ICCV, pp. 2137–2146 (2017)

    Google Scholar 

  61. Thewlis, J., Albanie, S., Bilen, H., Vedaldi, A.: Unsupervised learning of landmarks by descriptor vector exchange. In: ICCV (2019)

    Google Scholar 

  62. Thewlis, J., Bilen, H., Vedaldi, A.: Unsupervised learning of object frames by dense equivariant image labelling. In: NeurIPS (2017)

    Google Scholar 

  63. Thewlis, J., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks by factorized spatial embeddings. In: ICCV (2017)

    Google Scholar 

  64. Ufer, N., Ommer, B.: Deep semantic feature matching. In: CVPR, pp. 6914–6923 (2017)

    Google Scholar 

  65. Van Horn, G., Cole, E., Beery, S., Wilber, K., Belongie, S., Mac Aodha, O.: Benchmarking representation learning for natural world image collections. In: CVPR (2021)

    Google Scholar 

  66. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset (2011)

    Google Scholar 

  67. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: CVPR, pp. 3024–3033 (2021)

    Google Scholar 

  68. Wang, Z., et al.: Exploring set similarity for dense self-supervised representation learning. arXiv:2107.08712 (2021)

  69. Wei, F., Gao, Y., Wu, Z., Hu, H., Lin, S.: Aligning pretraining for detection via object-level contrastive learning. In: NeurIPS (2021)

    Google Scholar 

  70. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  71. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. PAMI 41(9), 2251–2265 (2018)

    Article  Google Scholar 

  72. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  73. Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B.: How far are we from solving pedestrian detection? In: CVPR, pp. 1259–1267 (2016)

    Google Scholar 

  74. Zhang, Y., Guo, Y., Jin, Y., Luo, Y., He, Z., Lee, H.: Unsupervised discovery of object landmarks as structural representations. In: CVPR (2018)

    Google Scholar 

  75. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. PAMI 38(5), 918–930 (2015)

    Article  Google Scholar 

  76. Zhao, D., Song, Z., Ji, Z., Zhao, G., Ge, W., Yu, Y.: Multi-scale matching networks for semantic correspondence. In: ICCV, pp. 3354–3364 (2021)

    Google Scholar 

  77. Zhong, Y., Yuan, B., Wu, H., Yuan, Z., Peng, J., Wang, Y.X.: Pixel contrastive-consistent semi-supervised semantic segmentation. In: ICCV, pp. 7273–7282 (2021)

    Google Scholar 

  78. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

Download references

Acknowledgements

Thanks to Hakan Bilen and Omiros Pantazis for their valuable feedback. This work was in part supported by the Turing 2.0 ‘Enabling Advanced Autonomy’ project funded by the EPSRC and the Alan Turing Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Aygün .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2741 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aygün, M., Mac Aodha, O. (2022). Demystifying Unsupervised Semantic Correspondence Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20056-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20055-7

  • Online ISBN: 978-3-031-20056-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics