Skip to main content

Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13690))

Included in the following conference series:

Abstract

Adversarial training (AT) for robust representation learning and self-supervised learning (SSL) for unsupervised representation learning are two active research fields. Integrating AT into SSL, multiple prior works have accomplished a highly significant yet challenging task: learning robust representation without labels. A widely used framework is adversarial contrastive learning which couples AT and SSL, and thus constitutes a very complex optimization problem. Inspired by the divide-and-conquer philosophy, we conjecture that it might be simplified as well as improved by solving two sub-problems: non-robust SSL and pseudo-supervised AT. This motivation shifts the focus of the task from seeking an optimal integrating strategy for a coupled problem to finding sub-solutions for sub-problems. With this said, this work discards prior practices of directly introducing AT to SSL frameworks and proposed a two-stage framework termed Decoupled Adversarial Contrastive Learning (DeACL). Extensive experimental results demonstrate that our DeACL achieves SOTA self-supervised adversarial robustness while significantly reducing the training time, which validates its effectiveness and efficiency. Moreover, our DeACL constitutes a more explainable solution, and its success also bridges the gap with semi-supervised AT for exploiting unlabeled samples for robust representation learning. The code is publicly accessible at https://github.com/pantheon5100/DeACL.

C. Zhang and K. Zhang—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: ICML (2018)

    Google Scholar 

  2. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. In: NeurIPS (2019)

    Google Scholar 

  3. Bardes, A., Ponce, J., LeCun, Y.: Vicreg: variance-invariance-covariance regularization for self-supervised learning. arXiv preprint arXiv:2105.04906 (2021)

  4. Benz, P., Zhang, C., Imtiaz, T., Kweon, I.S.: Double targeted universal adversarial perturbations. In: ACCV (2020)

    Google Scholar 

  5. Benz, P., Zhang, C., Karjauv, A., Kweon, I.S.: Universal adversarial training with class-wise perturbations. In: ICME (2021)

    Google Scholar 

  6. Carlini, N., Wagner, D.: Adversarial examples are not easily detected. In: ACM Workshop on Artificial Intelligence and Security (2017)

    Google Scholar 

  7. Carmon, Y., Raghunathan, A., Schmidt, L., Liang, P., Duchi, J.C.: Unlabeled data improves adversarial robustness. In: NeurIPS (2019)

    Google Scholar 

  8. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882 (2020)

  9. Chen, T., Liu, S., Chang, S., Cheng, Y., Amini, L., Wang, Z.: Adversarial robustness: from self-supervised pre-training to fine-tuning. In: CVPR (2020)

    Google Scholar 

  10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  11. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  12. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR (2021)

    Google Scholar 

  13. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  14. da Costa, V.G.T., Fini, E., Nabi, M., Sebe, N., Ricci, E.: Solo-learn: a library of self-supervised methods for visual representation learning. JMLR (2022)

    Google Scholar 

  15. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: ICML (2020)

    Google Scholar 

  16. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (2019)

    Google Scholar 

  17. El-Nouby, A., et al.: XCiT: cross-covariance image transformers. arXiv preprint arXiv:2106.09681 (2021)

  18. Ermolov, A., Siarohin, A., Sangineto, E., Sebe, N.: Whitening for self-supervised representation learning. In: ICML. PMLR (2021)

    Google Scholar 

  19. Fan, L., Liu, S., Chen, P.Y., Zhang, G., Gan, C.: When does contrastive learning preserve adversarial robustness from pretraining to finetuning? In: NeurIPS (2021)

    Google Scholar 

  20. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  21. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  22. Gowal, S., Huang, P.S., van den Oord, A., Mann, T., Kohli, P.: Self-supervised adversarial robustness for the low-label, high-data regime. In: ICLR (2021)

    Google Scholar 

  23. Gowal, S., Qin, C., Uesato, J., Mann, T., Kohli, P.: Uncovering the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593 (2020)

  24. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  25. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)

  26. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  28. Henaff, O.: Data-efficient image recognition with contrastive predictive coding. In: ICML (2020)

    Google Scholar 

  29. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  30. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  31. Jiang, Z., Chen, T., Chen, T., Wang, Z.: Robust pre-training by adversarial contrastive learning. In: NeurIPS (2020)

    Google Scholar 

  32. Kim, M., Tack, J., Hwang, S.J.: Adversarial self-supervised contrastive learning. arXiv preprint arXiv:2006.07589 (2020)

  33. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite bert for self-supervised learning of language representations. In: ICLR (2020)

    Google Scholar 

  34. Li, C., et al.: Efficient self-supervised vision transformers for representation learning. arXiv preprint arXiv:2106.09785 (2021)

  35. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (2008)

    Google Scholar 

  36. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)

    Google Scholar 

  37. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: CVPR (2017)

    Google Scholar 

  38. Najafi, A., Maeda, S.i., Koyama, M., Miyato, T.: Robustness to adversarial perturbations in learning from incomplete data. In: NeurIPS (2019)

    Google Scholar 

  39. Nie, P., Zhang, Y., Geng, X., Ramamurthy, A., Song, L., Jiang, D.: DC-BERT: decoupling question and document for efficient contextual encoding. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (2020)

    Google Scholar 

  40. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  41. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  42. Pang, T., Yang, X., Dong, Y., Su, H., Zhu, J.: Bag of tricks for adversarial training. arXiv preprint arXiv:2010.00467 (2020)

  43. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog (2019)

    Google Scholar 

  44. Rice, L., Wong, E., Kolter, Z.: Overfitting in adversarially robust deep learning. In: ICML (2020)

    Google Scholar 

  45. Richemond, P.H., et al.: Byol works even without batch statistics. arXiv preprint arXiv:2010.10241 (2020)

  46. Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., Madry, A.: Adversarially robust generalization requires more data. In: NeurIPS (2018)

    Google Scholar 

  47. Su, W., Zhu, X., Cao, Y., Li, B., Lu, L., Wei, F., Dai, J.: VL-bert: pre-training of generic visual-linguistic representations. In: ICLR (2020)

    Google Scholar 

  48. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  49. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  50. Uesato, J., Alayrac, J.B., Huang, P.S., Stanforth, R., Fawzi, A., Kohli, P.: Are labels required for improving adversarial robustness? In: NeurIPS (2019)

    Google Scholar 

  51. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML (2020)

    Google Scholar 

  52. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  53. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  54. Xie, C., Tan, M., Gong, B., Yuille, A., Le, Q.V.: Smooth adversarial training. arXiv preprint arXiv:2006.14536 (2020)

  55. Xie, C., Yuille, A.: Intriguing properties of adversarial training at scale. In: ICLR (2020)

    Google Scholar 

  56. Xu, C., Yang, M.: Adversarial momentum-contrastive pre-training. arXiv preprint arXiv:2012.13154 (2020)

  57. Yeh, C.H., Hong, C.Y., Hsu, Y.C., Liu, T.L., Chen, Y., LeCun, Y.: Decoupled contrastive learning. arXiv preprint arXiv:2110.06848 (2021)

  58. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: ICML (2021)

    Google Scholar 

  59. Zhai, R., et al.: Adversarially robust generalization just requires more unlabeled data. arXiv preprint arXiv:1906.00555 (2019)

  60. Zhang, C., et al.: Resnet or densenet? Introducing dense shortcuts to resnet. In: WACV (2021)

    Google Scholar 

  61. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: Understanding adversarial examples from the mutual influence of images and perturbations. In: CVPR (2020)

    Google Scholar 

  62. Zhang, C., Benz, P., Karjauv, A., Kweon, I.S.: Universal adversarial perturbations through the lens of deep steganography: towards a fourier perspective. In: AAAI (2021)

    Google Scholar 

  63. Zhang, C., et al.: Revisiting residual networks with nonlinear shortcuts. In: BMVC (2019)

    Google Scholar 

  64. Zhang, C., Zhang, K., Pham, T.X., Yoo, C., Kweon, I.S.: Dual temperature helps contrastive learning without many negative samples: towards understanding and simplifying MoCo. In: CVPR (2022)

    Google Scholar 

  65. Zhang, C., Zhang, K., Zhang, C., Pham, T.X., Yoo, C.D., Kweon, I.S.: How does simsiam avoid collapse without negative samples? A unified understanding with self-supervised contrastive learning. In: ICLR (2022)

    Google Scholar 

  66. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically principled trade-off between robustness and accuracy. In: ICML (2019)

    Google Scholar 

  67. Zhang, J., Han, B., Niu, G., Liu, T., Sugiyama, M.: Where is the bottleneck of adversarial learning with unlabeled data? arXiv preprint arXiv:1911.08696 (2019)

  68. Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of visual embeddings. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C201270611), and Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2022-0-00951, Development of Uncertainty-Aware Agents Learning by Asking Questions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoning Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 163 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C. et al. (2022). Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20056-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20055-7

  • Online ISBN: 978-3-031-20056-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics