Skip to main content

Fast Two-View Motion Segmentation Using Christoffel Polynomials

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We address the problem of segmenting moving rigid objects based on two-view image correspondences under a perspective camera model. While this is a well understood problem, existing methods scale poorly with the number of correspondences. In this paper we propose a fast segmentation algorithm that scales linearly with the number of correspondences and show that on benchmark datasets it offers the best trade-off between error and computational time: it is at least one order of magnitude faster than the best method (with comparable or better accuracy), with the ratio growing up to three orders of magnitude for larger number of correspondences. We approach the problem from an algebraic perspective by exploiting the fact that all points belonging to a given object lie in the same quadratic surface. The proposed method is based on a characterization of each surface in terms of the Christoffel polynomial associated with the probability that a given point belongs to the surface. This allows for efficiently segmenting points “one surface at a time” in \(\mathcal {O}(\text {number of points)}\).

This work was supported in part by NSF grants IIS–1814631 and CNS–2038493, ONR grant N00014-21-1-2431 and U.S. DHS grant 22STESE00001-01-00.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a singular \(\textbf{L} \doteq \textbf{U}\begin{bmatrix} \boldsymbol{\Sigma } &{} \textbf{0} \\ \textbf{0} &{} \textbf{0} \end{bmatrix}\textbf{U}^T\), \(\textbf{L}^{-1}\doteq \textbf{U}\begin{bmatrix} \boldsymbol{\Sigma }^{-1} &{} \textbf{0} \\ \textbf{0} &{} \textbf{0} \end{bmatrix}\textbf{U}^T\).

References

  1. Kim, J.B., Kim, H.J.: Efficient region-based motion segmentation for a video monitoring system. Pattern Recogn. Lett. 24(1–3), 113–128 (2003)

    Article  Google Scholar 

  2. Ess, A., Mueller, T., Grabner, H., Van Gool, L.: Segmentation-based urban traffic scene understanding. In: BMVC, vol. 1, p. 2. Citeseer (2009)

    Google Scholar 

  3. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Underst. 115(2), 224–241 (2011)

    Article  Google Scholar 

  4. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  5. Saputra, M.R.U., Markham, A., Trigoni, N.: Visual SLAM and structure from motion in dynamic environments: a survey. ACM Comput. Surv. (CSUR) 51(2), 1–36 (2018)

    Article  Google Scholar 

  6. Ji, P., Li, H., Salzmann, M., Dai, Y.: Robust motion segmentation with unknown correspondences. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 204–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_14

    Chapter  Google Scholar 

  7. Wang, Y., Liu, Y., Blasch, E., Ling, H.: Simultaneous trajectory association and clustering for motion segmentation. IEEE Signal Process. Lett. 25(1), 145–149 (2017)

    Article  Google Scholar 

  8. Gear, C.W.: Multibody grouping from motion images. Int. J. Comput. Vis. 29(2), 133–150 (1998)

    Article  Google Scholar 

  9. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2797. IEEE (2009)

    Google Scholar 

  10. Kanatani, K.: Motion segmentation by subspace separation and model selection. In: Proceedings Eighth IEEE International Conference on computer Vision, ICCV 2001, vol. 2, pp. 586–591. IEEE (2001)

    Google Scholar 

  11. Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 94–106. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_8

    Chapter  Google Scholar 

  12. Liu, G., Lin, Z., Shuicheng Yan, J., Sun, Y.Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2012)

    Article  Google Scholar 

  13. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  14. Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: 2011 International Conference on Computer Vision, pp. 1615–1622. IEEE (2011)

    Google Scholar 

  15. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. PAMI 27(12), 1945–1959 (2005)

    Article  Google Scholar 

  16. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1832–1845 (2009)

    Article  Google Scholar 

  17. Zappella, L., Provenzi, E., Lladó, X., Salvi, J.: Adaptive motion segmentation algorithm based on the principal angles configuration. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 15–26. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7_2

    Chapter  Google Scholar 

  18. Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum cost multicuts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3271–3279 (2015)

    Google Scholar 

  19. Costeira, J.P., Kanade, T.: A multibody factorization method for independently moving objects. Int. J. Comput. Vision 29(3), 159–179 (1998)

    Article  Google Scholar 

  20. Gruber, A., Weiss, Y.: Multibody factorization with uncertainty and missing data using the EM algorithm. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, p. I. IEEE (2004)

    Google Scholar 

  21. Vidal, R., Tron, R., Hartley, R.: Multiframe motion segmentation with missing data using powerfactorization and GPCA. Int. J. Comput. Vision 79(1), 85–105 (2008)

    Article  Google Scholar 

  22. Sugaya, Y., Kanatani, K.: Geometric structure of degeneracy for multi-body motion segmentation. In: Comaniciu, D., Mester, R., Kanatani, K., Suter, D. (eds.) SMVP 2004. LNCS, vol. 3247, pp. 13–25. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30212-4_2

    Chapter  Google Scholar 

  23. Flores-Mangas, F., Jepson, A.D.: Fast rigid motion segmentation via incrementally-complex local models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2259–2266 (2013)

    Google Scholar 

  24. Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  25. Schindler, K., U, J., Wang, H.: Perspective n-view multibody structure-and-motion through model selection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 606–619. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_47

    Chapter  Google Scholar 

  26. Dragon, R., Rosenhahn, B., Ostermann, J.: Multi-scale clustering of frame-to-frame correspondences for motion segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 445–458. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_32

    Chapter  Google Scholar 

  27. Li, Z., Guo, J., Cheong, L.-F., Zhou, S.Z.: Perspective motion segmentation via collaborative clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369–1376 (2013)

    Google Scholar 

  28. Xu, X., Cheong, L.F., Li, Z.: Motion segmentation by exploiting complementary geometric models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2859–2867 (2018)

    Google Scholar 

  29. Arrigoni, F., Pajdla, T.: Motion segmentation via synchronization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  30. Arrigoni, F., Pajdla, T.: Robust motion segmentation from pairwise matches. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 671–681 (2019)

    Google Scholar 

  31. Arrigoni, F., Magri, L., Pajdla, T.: On the usage of the trifocal tensor in motion segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 514–530. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_31

    Chapter  Google Scholar 

  32. Arrigoni, F., Ricci, E., Pajdla, T.: Multi-frame motion segmentation by combining two-frame results. Int. J. Comput. Vision 130(3), 696–728 (2022)

    Article  Google Scholar 

  33. Torr, P.H.S.: Geometric motion segmentation and model selection. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356(1740), 1321–1340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vidal, R., Soatto, S., Ma, Y., Sastry, S.: Segmentation of dynamic scenes from the multibody fundamental matrix. In: ECCV Workshop on Vision and Modeling of Dynamic Scenes (2002)

    Google Scholar 

  35. Li, H.: Two-view motion segmentation from linear programming relaxation. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  36. Jian, Y.-D., Chen, C.-S.: Two-view motion segmentation with model selection and outlier removal by RANSAC-enhanced Dirichlet process mixture models. Int. J. Comput. Vision 88(3), 489–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jung, H., Ju, J., Kim, J.: Rigid motion segmentation using randomized voting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1210–1217 (2014)

    Google Scholar 

  38. Poling, B., Lerman, G.: A new approach to two-view motion segmentation using global dimension minimization. Int. J. Comput. Vision 108(3), 165–185 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45243-0_31

    Chapter  Google Scholar 

  40. Kanazawa, Y., Kawakami, H.: Detection of planar regions with uncalibrated stereo using distributions of feature points. In: BMVC, pp. 1–10. Citeseer (2004)

    Google Scholar 

  41. Tordoff, B.J., Murray, D.W.: Guided-MLESAC: faster image transform estimation by using matching priors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1523–1535 (2005)

    Article  Google Scholar 

  42. Chum, O., Matas, J.: Matching with PROSAC-progressive sample consensus. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 220–226. IEEE (2005)

    Google Scholar 

  43. Brahmachari, A.S., Sarkar, S.: Blogs: balanced local and global search for non-degenerate two view epipolar geometry. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1685–1692. IEEE (2009)

    Google Scholar 

  44. McIlroy, P., Rosten, E., Taylor, S., Drummond, T.: Deterministic sample consensus with multiple match hypotheses. In: BMVC, pp. 1–11. Citeseer (2010)

    Google Scholar 

  45. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  46. Vincent, E., Laganiére, R.: Detecting planar homographies in an image pair. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, ISPA 2001. Conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat.), pp. 182–187. IEEE (2001)

    Google Scholar 

  47. Zuliani, M., Kenney, C.S., Manjunath, B.S.: The multiRANSAC algorithm and its application to detect planar homographies. In: IEEE International Conference on Image Processing, vol. 3, pp. III-153. IEEE (2005)

    Google Scholar 

  48. Magri, L., Fusiello, A.: Multiple model fitting as a set coverage problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3318–3326 (2016)

    Google Scholar 

  49. Zhang, W., Kǒsecká, J.: Nonparametric estimation of multiple structures with outliers. In: Vidal, R., Heyden, A., Ma, Y. (eds.) WDV 2005–2006. LNCS, vol. 4358, pp. 60–74. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70932-9_5

    Chapter  Google Scholar 

  50. Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_41

    Chapter  Google Scholar 

  51. Chin, T.-J., Suter, D., Wang, H.: Multi-structure model selection via kernel optimisation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3586–3593. IEEE (2010)

    Google Scholar 

  52. Magri, L., Fusiello, A.: T-linkage: a continuous relaxation of j-linkage for multi-model fitting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3954–3961 (2014)

    Google Scholar 

  53. Pham, T.T., Chin, T.-J., Yu, J., Suter, D.: The random cluster model for robust geometric fitting. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1658–1671 (2014)

    Article  Google Scholar 

  54. Magri, L., Fusiello, A.: Robust multiple model fitting with preference analysis and low-rank approximation. In: BMVC, vol. 20, p. 12 (2015)

    Google Scholar 

  55. Torr, P.H., Nasuto, S.J., Bishop, J.M.: NAPSAC: high noise, high dimensional robust estimation-it’s in the bag. In: British Machine Vision Conference (BMVC) (2002)

    Google Scholar 

  56. Chin, T.-J., Yu, J., Suter, D.: Accelerated hypothesis generation for multistructure data via preference analysis. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 625–638 (2011)

    Article  Google Scholar 

  57. Tennakoon, R., Sadri, A., Hoseinnezhad, R., Bab-Hadiashar, A.: Effective sampling: fast segmentation using robust geometric model fitting. IEEE Trans. Image Process. 27(9), 4182–4194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_37

    Chapter  Google Scholar 

  59. Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 1–12 (2009)

    Google Scholar 

  60. Kluger, F., Brachmann, E., Ackermann, H., Rother, C., Yang, M.Y., Rosenhahn, B.: CONSAC: robust multi-model fitting by conditional sample consensus. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4634–4643 (2020)

    Google Scholar 

  61. Ivashechkin, M., Barath, D., Matas, J.: VSAC: efficient and accurate estimator for H and F. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15243–15252 (2021)

    Google Scholar 

  62. Tennakoon, R., Suter, D., Zhang, E., Chin, T.-J., Bab-Hadiashar, A.: Consensus maximisation using influences of monotone boolean functions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2866–2875 (2021)

    Google Scholar 

  63. Magri, L., Fusiello, A.: Fitting multiple heterogeneous models by multi-class cascaded t-linkage. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7460–7468 (2019)

    Google Scholar 

  64. Xiao, G., Wang, H., Lai, T., Suter, D.: Hypergraph modelling for geometric model fitting. Pattern Recogn. 60, 748–760 (2016)

    Article  Google Scholar 

  65. Lin, S., Xiao, G., Yan, Y., Suter, D., Wang, H.: Hypergraph optimization for multi-structural geometric model fitting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8730–8737 (2019)

    Google Scholar 

  66. Magri, L., Leveni, F., Boracchi, G.: Multilink: multi-class structure recovery via agglomerative clustering and model selection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1853–1862 (2021)

    Google Scholar 

  67. Wang, H., Xiao, G., Yan, Y., Suter, D.: Searching for representative modes on hypergraphs for robust geometric model fitting. IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 697–711 (2018)

    Article  Google Scholar 

  68. Barath, D., Matas, J.: Progressive-X: efficient, anytime, multi-model fitting algorithm. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3780–3788 (2019)

    Google Scholar 

  69. Barath, D., Rozumny, D., Eichhardt, I., Hajder, L., Matas, J.: Progressive-X+: clustering in the consensus space. arXiv preprint arXiv:2103.13875 (2021)

  70. Vidal, R., Soatto, S., Ma, Y., Sastry, S.: An algebraic geometric approach to the identification of a class of linear hybrid systems. In: 42nd IEEE International Conference on Decision and Control, vol. 1, pp. 167–172 (2003)

    Google Scholar 

  71. Xu, Y.: On orthogonal polynomials in several variables. Spec. Funct. Q-Ser. Related Topics Fields Inst. Res. Math. Sci. Commun. Ser. 14, 247–270 (1997)

    MathSciNet  MATH  Google Scholar 

  72. Pauwels, E., Lasserre, J.B.: Sorting out typicality with the inverse moment matrix SOS polynomial. In: Advances in Neural Information Processing Systems, pp. 190–198 (2016)

    Google Scholar 

  73. Sznaier, M., Camps, O.: SOS-RSC: a sum-of-squares polynomial approach to robustifying subspace clustering algorithms. In: IEEE CVPR, pp. 8033–8041 (2018)

    Google Scholar 

  74. Wong, H.S., Chin, T.-J., Yu, J., Suter, D.: Dynamic and hierarchical multi-structure geometric model fitting. In: 2011 International Conference on Computer Vision, pp. 1044–1051. IEEE (2011)

    Google Scholar 

  75. Wang, H., Chin, T.-J., Suter, D.: Simultaneously fitting and segmenting multiple-structure data with outliers. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1177–1192 (2011)

    Article  Google Scholar 

  76. Tiwari, L., Anand, S.: DGSAC: density guided sampling and consensus. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 974–982. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavia Camps .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1206 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ozbay, B., Camps, O., Sznaier, M. (2022). Fast Two-View Motion Segmentation Using Christoffel Polynomials. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20056-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20055-7

  • Online ISBN: 978-3-031-20056-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics