Skip to main content

ScalableViT: Rethinking the Context-Oriented Generalization of Vision Transformer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13684))

Included in the following conference series:

Abstract

The vanilla self-attention mechanism inherently relies on pre-defined and steadfast computational dimensions. Such inflexibility restricts it from possessing context-oriented generalization that can bring more contextual cues and global representations. To mitigate this issue, we propose a Scalable Self-Attention (SSA) mechanism that leverages two scaling factors to release dimensions of query, key, and value matrices while unbinding them with the input. This scalability fetches context-oriented generalization and enhances object sensitivity, which pushes the whole network into a more effective trade-off state between accuracy and cost. Furthermore, we propose an Interactive Window-based Self-Attention (IWSA), which establishes interaction between non-overlapping regions by re-merging independent value tokens and aggregating spatial information from adjacent windows. By stacking the SSA and IWSA alternately, the Scalable Vision Transformer (ScalableViT) achieves state-of-the-art performance on general-purpose vision tasks. For example, ScalableViT-S outperforms Twins-SVT-S by 1.4% and Swin-T by 1.8% on ImageNet-1K classification.

R. Yang and H. Ma—Equal contribution.

R. Yang—This work was partly done while Rui Yang interned at ByteDance. Code: https://github.com/Yangr116/ScalableViT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bello, I., Zoph, B., Le, Q., Vaswani, A., Shlens, J.: Attention augmented convolutional networks. In: ICCV, pp. 3285–3294. IEEE (2019)

    Google Scholar 

  2. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: ICCV, pp. 1971–1980 (2019)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  5. Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers. arXiv preprint arXiv:2104.13840 (2021)

  6. Chu, X., et al.: Conditional positional encodings for vision transformers. arXiv preprint arXiv:2102.10882 (2021)

  7. Contributors, M.: MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark (2020). https://github.com/open-mmlab/mmsegmentation

  8. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  9. Dong, X., et al.: CSWin transformer: a general vision transformer backbone with cross-shaped windows. arXiv preprint arXiv:2107.00652 (2021)

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  11. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, D.M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  12. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. arXiv preprint arXiv:2103.00112 (2021)

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. IEEE TPAMI 42(2), 386–397 (2020)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  15. Hu, H., Zhang, Z., Xie, Z., Lin, S.: Local relation networks for image recognition. In: ICCV, pp. 3463–3472 (2019)

    Google Scholar 

  16. Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J.: Interlaced sparse self-attention for semantic segmentation. arXiv preprint arXiv:1907.12273 (2019)

  17. Huang, Z., Ben, Y., Luo, G., Cheng, P., Yu, G., Fu, B.: Shuffle transformer: rethinking spatial shuffle for vision transformer. arXiv preprint arXiv:2106.03650 (2021)

  18. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: ICCV, pp. 603–612 (2019)

    Google Scholar 

  19. Islam, M.A., Jia, S., Bruce, N.D.B.: How much position information do convolutional neural networks encode? In: ICLR (2020)

    Google Scholar 

  20. Kirillov, A., Girshick, R.B., He, K., Dollár, P.: Panoptic feature pyramid networks. In: CVPR, pp. 6399–6408 (2019)

    Google Scholar 

  21. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR, pp. 936–944 (2017)

    Google Scholar 

  22. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. IEEE TPAMI 42(2), 318–327 (2020)

    Article  Google Scholar 

  23. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  25. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google Scholar 

  26. Parmar, N., Ramachandran, P., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: NeurIPS, pp. 68–80 (2019)

    Google Scholar 

  27. Radosavovic, I., Kosaraju, R.P., Girshick, R.B., He, K., Dollár, P.: Designing network design spaces. In: CVPR, pp. 10425–10433 (2020)

    Google Scholar 

  28. Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.J.: Dynamicvit: efficient vision transformers with dynamic token sparsification. arXiv preprint arXiv:2106.02034 (2021)

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015)

    Google Scholar 

  30. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML, vol. 97, pp. 6105–6114 (2019)

    Google Scholar 

  31. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: Proceedings of the 38th International Conference on Machine Learning, ICML, vol. 139, pp. 10347–10357 (2021)

    Google Scholar 

  32. Vaswani, A., Ramachandran, P., Srinivas, A., Parmar, N., Hechtman, B.A., Shlens, J.: Scaling local self-attention for parameter efficient visual backbones. In: CVPR, pp. 12894–12904 (2021)

    Google Scholar 

  33. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  34. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 108–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7

    Chapter  Google Scholar 

  35. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. arXiv preprint arXiv:2102.12122 (2021)

  36. Wang, W., et al.: Crossformer: a versatile vision transformer hinging on cross-scale attention. arXiv preprint arXiv:2108.00154 (2021)

  37. Wang, X., Girshick, R.B., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  38. Wu, H., et al.: CVT: introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

  39. Xia, X., et al.: TRT-ViT: TensorRT-oriented vision transformer. arXiv preprint arXiv:2205.09579 (2022)

  40. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 432–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_26

    Chapter  Google Scholar 

  41. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 5987–5995 (2017)

    Google Scholar 

  42. Xu, W., Xu, Y., Chang, T., Tu, Z.: Co-scale conv-attentional image transformers. arXiv preprint arXiv:2104.06399 (2021)

  43. Yin, M., et al.: Disentangled non-local neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_12

    Chapter  Google Scholar 

  44. Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating convolution designs into visual transformers. arXiv preprint arXiv:2103.11816 (2021)

  45. Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986 (2021)

  46. Yuan, Y., et al.: HRFormer: high-resolution transformer for dense prediction. arXiv preprint arXiv:2110.09408 (2021)

  47. Zhou, B., et al.: Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis. 127(3), 302–321 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China 505 (Grant No. 2020AAA0108303), the National Natural Science Foundation of China (Grant No. 41876098) and the Shenzhen Science and Technology Project (Grant No. JCYJ20200109143041798).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Wu or Xiu Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 316 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, R. et al. (2022). ScalableViT: Rethinking the Context-Oriented Generalization of Vision Transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13684. Springer, Cham. https://doi.org/10.1007/978-3-031-20053-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20053-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20052-6

  • Online ISBN: 978-3-031-20053-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics