Skip to main content

Learning Hierarchy Aware Features for Reducing Mistake Severity

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13684))

Included in the following conference series:

Abstract

Label hierarchies are often available apriori as part of biological taxonomy or language datasets WordNet. Several works exploit these to learn hierarchy aware features in order to improve the classifier to make semantically meaningful mistakes while maintaining or reducing the overall error. In this paper, we propose a novel approach for learning Hierarchy Aware Features (HAF) that leverages classifiers at each level of the hierarchy that are constrained to generate predictions consistent with the label hierarchy. The classifiers are trained by minimizing a Jensen-Shannon Divergence with target soft labels obtained from the fine-grained classifiers. Additionally, we employ a simple geometric loss that constrains the feature space geometry to capture the semantic structure of the label space. HAF is a training time approach that improves the mistakes while maintaining top-1 error, thereby, addressing the problem of cross-entropy loss that treats all mistakes as equal. We evaluate HAF on three hierarchical datasets and achieve state-of-the-art results on the iNaturalist-19 and CIFAR-100 datasets. The source code is available at https://github.com/07Agarg/HAF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the supplementary material for a derivation.

References

  1. Abe, N., Zadrozny, B., Langford, J.: An iterative method for multi-class cost-sensitive learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 3–11 (2004)

    Google Scholar 

  2. Barz, B., Denzler, J.: Hierarchy-based image embeddings for semantic image retrieval. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 638–647. IEEE (2019)

    Google Scholar 

  3. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class tasks. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23. Curran Associates Inc. (2010). https://proceedings.neurips.cc/paper/2010/file/06138bc5af6023646ede0e1f7c1eac75-Paper.pdf

  4. Bertinetto, L., Mueller, R., Tertikas, K., Samangooei, S., Lord, N.A.: Making better mistakes: leveraging class hierarchies with deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  5. Bilal, A., Jourabloo, A., Ye, M., Liu, X., Ren, L.: Do convolutional neural networks learn class hierarchy? IEEE Trans. Visual Comput. Graph. 24(1), 152–162 (2017)

    Article  Google Scholar 

  6. Brust, C.-A., Denzler, J.: Integrating domain knowledge: using hierarchies to improve deep classifiers. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 3–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41404-7_1

    Chapter  Google Scholar 

  7. Chang, D., Pang, K., Zheng, Y., Ma, Z., Song, Y.Z., Guo, J.: Your “flamingo” is my “bird”: fine-grained, or not. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11476–11485 (2021)

    Google Scholar 

  8. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_6

    Chapter  Google Scholar 

  9. Deng, J., Krause, J., Berg, A.C., Fei-Fei, L.: Hedging your bets: optimizing accuracy-specificity trade-offs in large scale visual recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3450–3457. IEEE (2012)

    Google Scholar 

  10. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26. Curran Associates Inc. (2013). https://proceedings.neurips.cc/paper/2013/file/7cce53cf90577442771720a370c3c723-Paper.pdf

  11. Fuglede, B., Topsoe, F.: Jensen-shannon divergence and hilbert space embedding. In: International Symposium on Information Theory, 2004. ISIT 2004. Proceedings, p. 31. IEEE (2004)

    Google Scholar 

  12. Garg, A., Bagga, S., Singh, Y., Anand, S.: Hiermatch: leveraging label hierarchies for improving semi-supervised learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1015–1024 (2022)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Karthik, S., Prabhu, A., Dokania, P.K., Gandhi, V.: No cost likelihood manipulation at test time for making better mistakes in deep networks. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=193sEnKY1ij

  15. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  16. Landrieu, L., Garnot, V.S.F.: Leveraging class hierarchies with metric-guided prototype learning. In: British Machine Vision Conference (BMVC) (2021)

    Google Scholar 

  17. Liu, S., Chen, J., Pan, L., Ngo, C.W., Chua, T.S., Jiang, Y.G.: Hyperbolic visual embedding learning for zero-shot recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9273–9281 (2020)

    Google Scholar 

  18. Mao, Y., Tian, J., Han, J., Ren, X.: Hierarchical text classification with reinforced label assignment. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 445–455 (2019)

    Google Scholar 

  19. Miller, G.A.: WordNet: An Electronic Lexical Database. MIT press (1998)

    Google Scholar 

  20. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  21. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=ryQu7f-RZ

  22. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  23. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: Proceedings of 6th International Conference on Learning Representations ICLR (2018)

    Google Scholar 

  24. Su, J., Maji, S.: Semi-supervised learning with taxonomic labels. In: British Machine Vision Conference (BMVC) (2021)

    Google Scholar 

  25. Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)

    Google Scholar 

  26. Wang, Y., Wang, Z., Hu, Q., Zhou, Y., Su, H.: Hierarchical semantic risk minimization for large-scale classification. In: IEEE Transactions on Cybernetics (2021)

    Google Scholar 

  27. Wehrmann, J., Cerri, R., Barros, R.: Hierarchical multi-label classification networks. In: International Conference on Machine Learning, pp. 5075–5084. PMLR (2018)

    Google Scholar 

  28. Wu, H., Merler, M., Uceda-Sosa, R., Smith, J.R.: Learning to make better mistakes: semantics-aware visual food recognition. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 172–176 (2016)

    Google Scholar 

  29. Yang, Z., Bastan, M., Zhu, X., Gray, D., Samaras, D.: Hierarchical proxy-based loss for deep metric learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1859–1868 (2022)

    Google Scholar 

  30. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label smoothing regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  31. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Richard C. Wilson, E.R.H., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 87.1–87.12. BMVA Press (2016). https://doi.org/10.5244/C.30.87

Download references

Acknowledgement

Ashima Garg was supported by SERB, Govt. of India, under grant no. CRG/2020/006049. Depanshu Sani was supported by Google’s AI for Social Good “Impact Scholars” program, 2021. Saket Anand gratefully acknowledges for the partial support from the Infosys Center for Artificial Intelligence at IIIT-Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashima Garg .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2432 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garg, A., Sani, D., Anand, S. (2022). Learning Hierarchy Aware Features for Reducing Mistake Severity. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13684. Springer, Cham. https://doi.org/10.1007/978-3-031-20053-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20053-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20052-6

  • Online ISBN: 978-3-031-20053-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics