Abstract
Furnishing and rendering indoor scenes has been a long-standing task for interior design, where artists create a conceptual design for the space, build a 3D model of the space, decorate, and then perform rendering. Although the task is important, it is tedious and requires tremendous effort. In this paper, we introduce a new problem of domain-specific indoor scene image synthesis, namely neural scene decoration. Given a photograph of an empty indoor space and a list of decorations with layout determined by user, we aim to synthesize a new image of the same space with desired furnishing and decorations. Neural scene decoration can be applied to create conceptual interior designs in a simple yet effective manner. Our attempt to this research problem is a novel scene generation architecture that transforms an empty scene and an object layout into a realistic furnished scene photograph. We demonstrate the performance of our proposed method by comparing it with conditional image synthesis baselines built upon prevailing image translation approaches both qualitatively and quantitatively. We conduct extensive experiments to further validate the plausibility and aesthetics of our generated scenes. Our implementation is available at https://github.com/hkust-vgd/neural_scene_decoration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bau, D.: Semantic photo manipulation with a generative image prior. ACM Trans. Graph. 38(4), 1–11 (2019)
Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: Proceedings of the International Conference on Learning Representations (2018)
Fisher, M., Ritchie, D., Savva, M., Funkhouser, T.A., Hanrahan, P.: Example-based synthesis of 3d object arrangements. ACM Trans. Graph. 31(6), 1–11 (2012)
Germer, T., Schwarz, M.: Procedural arrangement of furniture for real-time walkthroughs. Comput. Graph. Forum 28(8), 2068–2078 (2009)
Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the Advances in Neural Information Processing Systems (2014)
He, S., et al.: Context-aware layout to image generation with enhanced object appearance. In: CVPR (2021)
Henderson, P., Subr, K., Ferrari, V.: Automatic generation of constrained furniture layouts. arXiv preprint arXiv:1711.10939 (2017)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Proceedings of the Advances in Neural Information Processing Systems (2017)
Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., Huang, H.: Graph2Plan: learning floorplan generation from layout graphs. ACM Trans. Graph. 39(4), 118–128 (2020)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: Proceedings of the International Conference on Learning Representations (2018)
Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: Proceedings of the Advances in Neural Information Processing Systems (2020)
Karras, T., et al.: Alias-free generative adversarial networks. arXiv preprint arXiv:2106.12423 (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4217–4228 (2021)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Karsch, K.: Inverse Rendering Techniques for Physically Grounded Image Editing. Ph.D. thesis, University of Illinois at Urbana-Champaign (2015)
Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into legacy photographs. ACM Trans. Graph. 30(6), 1–14 (2011)
Karsch, K., et al.: Automatic scene inference for 3D object compositing. ACM Trans. Graph. 33(3), 1–15 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the International Conference on Learning Representations (2014)
Krishna, R., et al.: Visual genome: Connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123, 32–73 (2017)
Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: LayoutGAN: generating graphic layouts with wireframe discriminators. In: Proceedings of the International Conference on Learning Representations (2019)
Li, M., et al.: GRAINS: generative recursive autoencoders for indoor scenes. ACM Trans. Graph. 38(2), 1–16 (2019)
Li, Y., Cheng, Y., Gan, Z., Yu, L., Wang, L., Liu, J.: BachGAN: high-resolution image synthesis from salient object layout. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Li, Z., Wu, J., Koh, I., Tang, Y., Sun, L.: Image synthesis from layout with locality-aware mask adaption. In: ICCV (2021)
Liang, Y., Fan, L., Ren, P., Xie, X., Hua, X.S.: Decorin: an automatic method for plane-based decorating. IEEE Trans. Vis. Comput. Graph. 27, 3438–3450 (2021)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis. In: Proceedings of the International Conference on Learning Representations (2021)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G., Furukawa, Y.: House-GAN: relational generative adversarial networks for graph-constrained house layout generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 162–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_10
Nichol, A., et al.: GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint 2112.10741 (2021)
Obukhov, A., Seitzer, M., Wu, P.W., Zhydenko, S., Kyl, J., Lin, E.Y.J.: High-fidelity performance metrics for generative models in pytorch (2020)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Ritchie, D., Wang, K., Lin, Y.A.: Fast and flexible indoor scene synthesis via deep convolutional generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Sun, W., Wu, T.: Image synthesis from reconfigurable layout and style. In: ICCV (2019)
Sun, W., Wu, T.: Learning layout and style reconfigurable gans for controllable image synthesis. IEEE Trans. Pattern Anal. Mach. Intel. (PAMI) 44, 5070–5087 (2021)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
Tang, H., Xu, D., Sebe, N., Wang, Y., Corso, J.J., Yan, Y.: Multi-channel attention selection GAN with cascaded semantic guidance for cross-view image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Turkoglu, M.O., Thong, W., Spreeuwers, L., Kicanaoglu, B.: A layer-based sequential framework for scene generation with gans. In: AAAI Conference on Artificial Intelligence (2019)
Wang, K., Lin, Y.A., Weissmann, B., Savva, M., Chang, A.X., Ritchie, D.: Planit: planning and instantiating indoor scenes with relation graph and spatial prior networks. ACM Trans. Graph. 38(4), 1–15 (2019)
Wang, K., Savva, M., Chang, A.X., Ritchie, D.: Deep convolutional priors for indoor scene synthesis. ACM Trans. Graph. 37(4), 1–14 (2018)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Yang, C., Shen, Y., Zhou, B.: Semantic hierarchy emerges in deep generative representations for scene synthesis. Int. J. Comput. Vision 129(5), 1451–1466 (2020)
Yu, L.F., Yeung, S.K., Tang, C.K., Terzopoulos, D., Chan, T.F., Osher, S.J.: Make it home: automatic optimization of furniture arrangement. ACM Trans. Graph. 30(4), 1–11 (2011)
Yu, L.F., Yeung, S.K., Terzopoulos, D.: The clutterpalette: an interactive tool for detailing indoor scenes. IEEE Trans. Vis. Comput. Graph. 22, 1138–1148 (2015)
Zhang, E., Cohen, M.F., Curless, B.: Emptying, refurnishing, and relighting indoor spaces. ACM Trans. Graph. 35(6), 1–14 (2016)
Zhang, S.K., Li, Y.X., He, Y., Yang, Y.L., Zhang, S.H.: Mageadd: real-time interaction simulation for scene synthesis. In: ACM International Conference on Multimedia (2021)
Zhang, Z., et al.: Deep generative modeling for scene synthesis via hybrid representations. ACM Trans. Graph. 39(2), 1–21 (2020)
Zheng, J., Zhang, J., Li, J., Tang, R., Gao, S., Zhou, Z.: Structured3D: a large photo-realistic dataset for structured 3D modeling. In: Proceedings of the European Conference on Computer Vision (2020)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Proceedings of the Advances in Neural Information Processing Systems (2017)
Acknowledgment
This paper was partially supported by an internal grant from HKUST (R9429) and the HKUST-WeBank Joint Lab.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pang, HW., Chen, Y., Le, PH., Hua, BS., Nguyen, D.T., Yeung, SK. (2022). Neural Scene Decoration from a Single Photograph. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-20050-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20049-6
Online ISBN: 978-3-031-20050-2
eBook Packages: Computer ScienceComputer Science (R0)