Skip to main content

Neural Scene Decoration from a Single Photograph

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13683))

Included in the following conference series:

Abstract

Furnishing and rendering indoor scenes has been a long-standing task for interior design, where artists create a conceptual design for the space, build a 3D model of the space, decorate, and then perform rendering. Although the task is important, it is tedious and requires tremendous effort. In this paper, we introduce a new problem of domain-specific indoor scene image synthesis, namely neural scene decoration. Given a photograph of an empty indoor space and a list of decorations with layout determined by user, we aim to synthesize a new image of the same space with desired furnishing and decorations. Neural scene decoration can be applied to create conceptual interior designs in a simple yet effective manner. Our attempt to this research problem is a novel scene generation architecture that transforms an empty scene and an object layout into a realistic furnished scene photograph. We demonstrate the performance of our proposed method by comparing it with conditional image synthesis baselines built upon prevailing image translation approaches both qualitatively and quantitatively. We conduct extensive experiments to further validate the plausibility and aesthetics of our generated scenes. Our implementation is available at https://github.com/hkust-vgd/neural_scene_decoration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bau, D.: Semantic photo manipulation with a generative image prior. ACM Trans. Graph. 38(4), 1–11 (2019)

    Article  Google Scholar 

  2. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  3. Fisher, M., Ritchie, D., Savva, M., Funkhouser, T.A., Hanrahan, P.: Example-based synthesis of 3d object arrangements. ACM Trans. Graph. 31(6), 1–11 (2012)

    Article  Google Scholar 

  4. Germer, T., Schwarz, M.: Procedural arrangement of furniture for real-time walkthroughs. Comput. Graph. Forum 28(8), 2068–2078 (2009)

    Article  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  6. He, S., et al.: Context-aware layout to image generation with enhanced object appearance. In: CVPR (2021)

    Google Scholar 

  7. Henderson, P., Subr, K., Ferrari, V.: Automatic generation of constrained furniture layouts. arXiv preprint arXiv:1711.10939 (2017)

  8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Proceedings of the Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  9. Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., Huang, H.: Graph2Plan: learning floorplan generation from layout graphs. ACM Trans. Graph. 39(4), 118–128 (2020)

    Article  Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  12. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: Proceedings of the Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  13. Karras, T., et al.: Alias-free generative adversarial networks. arXiv preprint arXiv:2106.12423 (2021)

  14. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  15. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4217–4228 (2021)

    Article  Google Scholar 

  16. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  17. Karsch, K.: Inverse Rendering Techniques for Physically Grounded Image Editing. Ph.D. thesis, University of Illinois at Urbana-Champaign (2015)

    Google Scholar 

  18. Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into legacy photographs. ACM Trans. Graph. 30(6), 1–14 (2011)

    Article  Google Scholar 

  19. Karsch, K., et al.: Automatic scene inference for 3D object compositing. ACM Trans. Graph. 33(3), 1–15 (2014)

    Article  MATH  Google Scholar 

  20. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the International Conference on Learning Representations (2014)

    Google Scholar 

  21. Krishna, R., et al.: Visual genome: Connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  22. Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: LayoutGAN: generating graphic layouts with wireframe discriminators. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  23. Li, M., et al.: GRAINS: generative recursive autoencoders for indoor scenes. ACM Trans. Graph. 38(2), 1–16 (2019)

    Article  Google Scholar 

  24. Li, Y., Cheng, Y., Gan, Z., Yu, L., Wang, L., Liu, J.: BachGAN: high-resolution image synthesis from salient object layout. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  25. Li, Z., Wu, J., Koh, I., Tang, Y., Sun, L.: Image synthesis from layout with locality-aware mask adaption. In: ICCV (2021)

    Google Scholar 

  26. Liang, Y., Fan, L., Ren, P., Xie, X., Hua, X.S.: Decorin: an automatic method for plane-based decorating. IEEE Trans. Vis. Comput. Graph. 27, 3438–3450 (2021)

    Article  Google Scholar 

  27. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  28. Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis. In: Proceedings of the International Conference on Learning Representations (2021)

    Google Scholar 

  29. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  30. Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G., Furukawa, Y.: House-GAN: relational generative adversarial networks for graph-constrained house layout generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 162–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_10

    Chapter  Google Scholar 

  31. Nichol, A., et al.: GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint 2112.10741 (2021)

    Google Scholar 

  32. Obukhov, A., Seitzer, M., Wu, P.W., Zhydenko, S., Kyl, J., Lin, E.Y.J.: High-fidelity performance metrics for generative models in pytorch (2020)

    Google Scholar 

  33. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  34. Ritchie, D., Wang, K., Lin, Y.A.: Fast and flexible indoor scene synthesis via deep convolutional generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  35. Sun, W., Wu, T.: Image synthesis from reconfigurable layout and style. In: ICCV (2019)

    Google Scholar 

  36. Sun, W., Wu, T.: Learning layout and style reconfigurable gans for controllable image synthesis. IEEE Trans. Pattern Anal. Mach. Intel. (PAMI) 44, 5070–5087 (2021)

    Google Scholar 

  37. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  38. Tang, H., Xu, D., Sebe, N., Wang, Y., Corso, J.J., Yan, Y.: Multi-channel attention selection GAN with cascaded semantic guidance for cross-view image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  39. Turkoglu, M.O., Thong, W., Spreeuwers, L., Kicanaoglu, B.: A layer-based sequential framework for scene generation with gans. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  40. Wang, K., Lin, Y.A., Weissmann, B., Savva, M., Chang, A.X., Ritchie, D.: Planit: planning and instantiating indoor scenes with relation graph and spatial prior networks. ACM Trans. Graph. 38(4), 1–15 (2019)

    Article  Google Scholar 

  41. Wang, K., Savva, M., Chang, A.X., Ritchie, D.: Deep convolutional priors for indoor scene synthesis. ACM Trans. Graph. 37(4), 1–14 (2018)

    Google Scholar 

  42. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  43. Yang, C., Shen, Y., Zhou, B.: Semantic hierarchy emerges in deep generative representations for scene synthesis. Int. J. Comput. Vision 129(5), 1451–1466 (2020)

    Article  Google Scholar 

  44. Yu, L.F., Yeung, S.K., Tang, C.K., Terzopoulos, D., Chan, T.F., Osher, S.J.: Make it home: automatic optimization of furniture arrangement. ACM Trans. Graph. 30(4), 1–11 (2011)

    Article  Google Scholar 

  45. Yu, L.F., Yeung, S.K., Terzopoulos, D.: The clutterpalette: an interactive tool for detailing indoor scenes. IEEE Trans. Vis. Comput. Graph. 22, 1138–1148 (2015)

    Article  Google Scholar 

  46. Zhang, E., Cohen, M.F., Curless, B.: Emptying, refurnishing, and relighting indoor spaces. ACM Trans. Graph. 35(6), 1–14 (2016)

    Google Scholar 

  47. Zhang, S.K., Li, Y.X., He, Y., Yang, Y.L., Zhang, S.H.: Mageadd: real-time interaction simulation for scene synthesis. In: ACM International Conference on Multimedia (2021)

    Google Scholar 

  48. Zhang, Z., et al.: Deep generative modeling for scene synthesis via hybrid representations. ACM Trans. Graph. 39(2), 1–21 (2020)

    Google Scholar 

  49. Zheng, J., Zhang, J., Li, J., Tang, R., Gao, S., Zhou, Z.: Structured3D: a large photo-realistic dataset for structured 3D modeling. In: Proceedings of the European Conference on Computer Vision (2020)

    Google Scholar 

  50. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  51. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Proceedings of the Advances in Neural Information Processing Systems (2017)

    Google Scholar 

Download references

Acknowledgment

This paper was partially supported by an internal grant from HKUST (R9429) and the HKUST-WeBank Joint Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wing Pang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7560 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pang, HW., Chen, Y., Le, PH., Hua, BS., Nguyen, D.T., Yeung, SK. (2022). Neural Scene Decoration from a Single Photograph. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20050-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20049-6

  • Online ISBN: 978-3-031-20050-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics