Abstract
Due to their inference, data representation and reconstruction properties, Variational Autoencoders (VAE) have been successfully used in continual learning classification tasks. However, their ability to generate images with specifications corresponding to the classes and databases learned during Continual Learning (CL) is not well understood and catastrophic forgetting remains a significant challenge. In this paper, we firstly analyze the forgetting behaviour of VAEs by developing a new theoretical framework that formulates CL as a dynamic optimal transport problem. This framework proves approximate bounds to the data likelihood without requiring the task information and explains how the prior knowledge is lost during the training process. We then propose a novel memory buffering approach, namely the Online Cooperative Memorization (OCM) framework, which consists of a Short-Term Memory (STM) that continually stores recent samples to provide future information for the model, and a Long-Term Memory (LTM) aiming to preserve a wide diversity of samples. The proposed OCM transfers certain samples from STM to LTM according to the information diversity selection criterion without requiring any supervised signals. The OCM framework is then combined with a dynamic VAE expansion mixture network for further enhancing its performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbasnejad, E., Dick, M., van der Hengel, A.: Infinite variational autoencoder for semi-supervised learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5888–5897 (2017)
Achille, A., et al.: Life-long disentangled representation learning with cross-domain latent homologies. In: Proceedings Advances in Neural Information Processing Systems (NeurIPS), pp. 9873–9883 (2018)
Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: Advances Neural Information Processing Systems (NeurIPS), vol. 33, pp. 11817–11826 (2019)
Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 11872–11883 (2019)
Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–11263 (2019)
Bang, J., Kim, H., Yoo, Y., Ha, J.W., Choi, J.: Rainbow memory: continual learning with a memory of diverse samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8218–8227 (2021)
Belghazi, M.I., et al.: Mutual information neural estimation. In: Proceedings International Conference on Machine Learning (ICML), vol. PMLR 80, pp. 531–540 (2018)
Bousquet, O., Gelly, S., Tolstikhin, I., Simon-Gabriel, C.J., Schoelkopf, B.: From optimal transport to generative modeling: the VEGAN cookbook. arXiv preprint arXiv:1705.07642 (2017)
Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders. arXiv preprint arXiv:1509.00519 (2015)
Chaudhry, A., et al.: On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486 (2019)
Chen, L., Dai, S., Pu, Y., Li, C., Su, Q., Carin, L.: Symmetric variational autoencoder and connections to adversarial learning. In: Proceedings International Conference on Artificial Intelligence and Statistics (AISTATS) 2018, vol. PMLR 84, pp. 661–669 (2018)
Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865 (2016)
De Lange, M., Tuytelaars, T.: Continual prototype evolution: learning online from non-stationary data streams. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8250–8259 (2021)
Egorov, E., Kuzina, A., Burnaev, E.: BooVAE: boosting approach for continual learning of VAE. Adv. Neural Inf. Process. Syst. (NeurIPS) 35, 17889–17901 (2021)
Fang, P., Harandi, M., Petersson, L.: Kernel methods in hyperbolic spaces. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10665–10674 (2021)
Fatras, K., Séjourné, T., Flamary, R., Courty, N.: Unbalanced minibatch optimal transport; applications to domain adaptation. In: International Conference on Machine Learning (ICML), vol. PMLR 139. pp. 3186–3197 (2021)
Goldberger, J., Gordon, S., Greenspan, H., et al.: An efficient image similarity measure based on approximations of kl-divergence between two gaussian mixtures. In: Proceedings IEEE International Conference on Computer Vision (ICCV), vol. 3, pp. 487–493 (2003)
Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings Advances in Neural Information Proceedings Systems (NIPS), pp. 2672–2680 (2014)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings Advances in Neural Information Processing Systems (NIPS), pp. 6626–6637 (2017)
Higgins, I., et al.: \(\beta \)-VAE: learning basic visual concepts with a constrained variational framework. In: Proceedings International Conference on Learning Representations (ICLR) (2017)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Proceedings NIPS Deep Learning Workshop. arXiv preprint arXiv:1503.02531 (2014)
Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., Zhang, H.: Deep learning with long short-term memory for time series prediction. IEEE Commun. Mag. 57(6), 114–119 (2019)
Jung, H., Ju, J., Jung, M., Kim, J.: Less-forgetting learning in deep neural networks. arXiv preprint arXiv:1607.00122 (2016)
Kantorovitch, L.: On the translocation of masses. Manag. Sci. 5(1), 1–4 (1958)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. (PNAS) 114(13), 3521–3526 (2017)
Knoblauch, J., Husain, H., Diethe, T.: Optimal continual learning has perfect memory and is NP-hard. In: Proceedings International Conference on Machine Learning (ICML), vol PMLR 119. pp. 5327–5337 (2020)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)
Kurle, R., Günnemann, S., van der Smagt, P.: Multi-source neural variational inference. In: Proceedings of AAAI Conference on Artificial Intelligence, vol. 33, pp. 4114–4121 (2019)
Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)
Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lee, S., Goldt, S., Saxe, A.: Continual learning in the teacher-student setup: impact of task similarity. In: International Conference on Machine Learning (ICML), vol. PMLR 139. pp. 6109–6119 (2021)
Lee, S., Ha, J., Zhang, D., Kim, G.: A neural Dirichlet process mixture model for task-free continual learning. In: Proceedings International Conference on Learning Representations (ICLR), arXiv preprint arXiv:2001.00689 (2020)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)
Liu, H., Gu, X., Samaras, D.: Wasserstein GAN with quadratic transport cost. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4832–4841 (2019)
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)
Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, pp. 6467–6476 (2017)
Ma, X., Zhou, C., Hovy, E.: MAE: mutual posterior-divergence regularization for variational autoencoders. In: Proceedings International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1901.01498 (2019)
Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. In: Proceedings of International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1710.10628 (2018)
Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)
Raghavan, K., Balaprakash, P.: Formalizing the generalization-forgetting trade-off in continual learning. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Ramapuram, J., Gregorova, M., Kalousis, A.: Lifelong generative modeling. In: Proceedings International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1705.09847 (2017)
Rao, D., Visin, F., Rusu, A.A., Teh, Y.W., Pascanu, R., Hadsell, R.: Continual unsupervised representation learning. In: Advances Neural Information Processing Systems (NeurIPS), pp. 7645–7655 (2019)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2001–2010 (2017)
Ren, B., Wang, H., Li, J., Gao, H.: Life-long learning based on dynamic combination model. Appl. Soft Comput. 56, 398–404 (2017)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Proceedings Advances in Neural Information Processing Systems (NIPS), pp. 2234–2242 (2016)
Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: Advances in Neural Information Processing Systems (NIPS), pp. 2990–2999 (2017)
Sobolev, A., Vetrov, D.: Importance weighted hierarchical variational inference. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33 (2019)
Takahashi, H., Iwata, T., Yamanaka, Y., Yamada, M., Yagi, S.: Variational autoencoder with implicit optimal priors. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5066–5073 (2019)
Tang, S., Chen, D., Zhu, J., Yu, S., Ouyang, W.: Layerwise optimization by gradient decomposition for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9634–9643 (2021)
Titsias, M.K., Schwarz, J., Matthews, A.G.D.G., Pascanu, R., Teh, Y.W.: Functional regularisation for continual learning with Gaussian processes. In: Proceedings International Conference on Learning Represenations (ICLR), arXiv preprint arXiv:1901.11356 (2019)
Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. In: International Conference on Learning Representations (ICLR), arXiv preprint arXiv:1711.01558 (2018)
Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 11(1), 37–57 (1985)
Wang, S., Li, X., Sun, J., Xu, Z.: Training networks in null space of feature covariance for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 184–193 (2021)
Ye, F., Bors, A.: Lifelong teacher-student network learning. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3092677
Ye, F., Bors, A.G.: Learning latent representations across multiple data domains using lifelong VAEGAN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 777–795. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_46
Ye, F., Bors, A.G.: Lifelong learning of interpretable image representations. In: Proceedings International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2020)
Ye, F., Bors, A.G.: Mixtures of variational autoencoders. In: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2020)
Ye, F., Bors, A.G.: Deep mixture generative autoencoders. IEEE Trans. Neural Netw. Learn. Syst. 33, 1–15 (2021). https://doi.org/10.1109/TNNLS.2021.3071401
Ye, F., Bors, A.G.: Infovaegan: learning joint interpretable representations by information maximization and maximum likelihood. In: Proceedings IEEE International Conference on Image Processing (ICIP), pp. 749–753 (2021). https://doi.org/10.1109/ICIP42928.2021.9506169
Ye, F., Bors, A.G.: Learning joint latent representations based on information maximization. Inform. Sci. 567, 216–236 (2021)
Ye, F., Bors, A.G.: Lifelong infinite mixture model based on knowledge-driven Dirichlet process. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)
Ye, F., Bors, A.G.: Lifelong mixture of variational autoencoders. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2021). https://doi.org/10.1109/TNNLS.2021.3096457
Ye, F., Bors, A.G.: Lifelong twin generative adversarial networks. In: Proceedings IEEE International Conference on Image Processing (ICIP), pp. 1289–1293 (2021)
Ye, F., Bors, A.G.: Learning an evolved mixture model for task-free continual learning (2022)
Ye, F., Bors, A.G.: Lifelong generative modelling using dynamic expansion graph model. In: AAAI on Artificial Intelligence. AAAI Press (2022)
Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., Mori, G.: Lifelong GAN: continual learning for conditional image generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2759–2768 (2019)
Zhao, S., Song, J., Ermon, S.: InfoVAE: balancing learning and inference in variational autoencoders. In: Proceedings AAAI Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ye, F., Bors, A.G. (2022). Continual Variational Autoencoder Learning via Online Cooperative Memorization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-20050-2_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20049-6
Online ISBN: 978-3-031-20050-2
eBook Packages: Computer ScienceComputer Science (R0)