Skip to main content

Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13682))

Included in the following conference series:

Abstract

Tracking pixels in videos is typically studied as an optical flow estimation problem, where every pixel is described with a displacement vector that locates it in the next frame. Even though wider temporal context is freely available, prior efforts to take this into account have yielded only small gains over 2-frame methods. In this paper, we revisit Sand and Teller’s “particle video” approach, and study pixel tracking as a long-range motion estimation problem, where every pixel is described with a trajectory that locates it in multiple future frames. We re-build this classic approach using components that drive the current state-of-the-art in flow and object tracking, such as dense cost maps, iterative optimization, and learned appearance updates. We train our models using long-range amodal point trajectories mined from existing optical flow data that we synthetically augment with multi-frame occlusions. We test our approach in trajectory estimation benchmarks and in keypoint label propagation tasks, and compare favorably against state-of-the-art optical flow and feature tracking methods.

Project page: https://particle-video-revisited.github.io.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The countable dots on playing cards, dice, or dominoes are also called “pips”.

References

  1. Biggs, B., Roddick, T., Fitzgibbon, A., Cipolla, R.: Creatures great and SMAL: recovering the shape and motion of animals from video. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_1

    Chapter  Google Scholar 

  2. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No. PR00662), vol. 2, pp. 690–696 (2000)

    Google Scholar 

  3. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 500–513 (2011)

    Article  Google Scholar 

  4. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  6. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)

    Google Scholar 

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. (IJRR) 32, 1231–1237 (2013)

    Google Scholar 

  8. Germain, H., Lepetit, V., Bourmaud, G.: Visual correspondence hallucination: towards geometric reasoning. In: ICLR (2022)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  11. Jabri, A., Owens, A., Efros, A.A.: Space-time correspondence as a contrastive random walk. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  12. Janai, J., Güney, F., Ranjan, A., Black, M., Geiger, A.: Unsupervised learning of multi-frame optical flow with occlusions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 713–731. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_42

    Chapter  Google Scholar 

  13. Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., Yi, K.M.: COTR: correspondence transformer for matching across images. In: ICCV (2021)

    Google Scholar 

  14. Kay, W., et al.: The kinetics human action video dataset. arXiv:1705.06950 (2017)

  15. Kong, C., Lucey, S.: Deep non-rigid structure from motion with missing data. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4365–4377 (2021)

    Google Scholar 

  16. Lai, Z., Xie, W.: Self-supervised learning for video correspondence flow. In: BMVC (2019)

    Google Scholar 

  17. Lai, Z., Lu, E., Xie, W.: MAST: a memory-augmented self-supervised tracker. In: CVPR (2020)

    Google Scholar 

  18. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision, vol. 81. Vancouver (1981)

    Google Scholar 

  19. Matthews, L., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 810–815 (2004)

    Article  Google Scholar 

  20. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR (2016)

    Google Scholar 

  21. Novotny, D., Ravi, N., Graham, B., Neverova, N., Vedaldi, A.: C3DPO: canonical 3D pose networks for non-rigid structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  22. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 DAVIS challenge on video object segmentation. arXiv:1704.00675 (2017)

  23. Ren, Z., Gallo, O., Sun, D., Yang, M.H., Sudderth, E.B., Kautz, J.: A fusion approach for multi-frame optical flow estimation. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) (2019)

    Google Scholar 

  24. Salgado, A., Sánchez, J.: Temporal constraints in large optical flow estimation. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 709–716. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75867-9_89

    Chapter  Google Scholar 

  25. Sand, P., Teller, S.: Particle video: long-range motion estimation using point trajectories. In: CVPR, vol. 2, pp. 2195–2202 (2006)

    Google Scholar 

  26. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X_45

    Chapter  Google Scholar 

  27. Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 11006, p. 1100612. International Society for Optics and Photonics (2019)

    Google Scholar 

  28. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)

    Google Scholar 

  29. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_32

    Chapter  Google Scholar 

  30. Sundararaman, R., De Almeida Braga, C., Marchand, E., Pettre, J.: Tracking pedestrian heads in dense crowd. In: CVPR, pp. 3865–3875 (2021)

    Google Scholar 

  31. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual slam algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9(1), 1–11 (2017)

    Google Scholar 

  32. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  33. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow (2020). https://github.com/princeton-vl/RAFT

  34. Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. ArXiv abs/2105.01601 (2021)

    Google Scholar 

  35. Tomasi, C., Kanade, T.: Detection and tracking of point. Int. J. Comput. Vis. 9, 137–154 (1991)

    Article  Google Scholar 

  36. Valmadre, J., et al.: Long-term tracking in the wild: a benchmark. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 692–707. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_41

    Chapter  Google Scholar 

  37. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  38. Wang, Q., Zhou, X., Hariharan, B., Snavely, N.: Learning feature descriptors using camera pose supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 757–774. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_44

    Chapter  Google Scholar 

  39. Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: CVPR (2019)

    Google Scholar 

  40. Wiles, O., Ehrhardt, S., Zisserman, A.: Co-attention for conditioned image matching. In: CVPR (2021)

    Google Scholar 

  41. Xu, J., Wang, X.: Rethinking self-supervised correspondence learning: a video frame-level similarity perspective. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10075–10085, October 2021

    Google Scholar 

  42. Xu, N., et al.: YouTube-VOS: sequence-to-sequence video object segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 603–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_36

    Chapter  Google Scholar 

  43. Yang, C., Lamdouar, H., Lu, E., Zisserman, A., Xie, W.: Self-supervised video object segmentation by motion grouping. In: ICCV (2021)

    Google Scholar 

  44. Yang, G., et al.: LASR: learning articulated shape reconstruction from a monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15980–15989 (2021)

    Google Scholar 

  45. Yang, G., et al.: ViSER: video-specific surface embeddings for articulated 3D shape reconstruction. In: NeurIPS (2021)

    Google Scholar 

  46. Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II. IEEE (2004)

    Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by Toyota Research Institute (TRI), US Army contract W911NF20D0002, a DARPA Young Investigator Award, an NSF CAREER award, an AFOSR Young Investigator Award, and DARPA Machine Common Sense. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Army or the United States Air Force.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam W. Harley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harley, A.W., Fang, Z., Fragkiadaki, K. (2022). Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics