Abstract
Tracking pixels in videos is typically studied as an optical flow estimation problem, where every pixel is described with a displacement vector that locates it in the next frame. Even though wider temporal context is freely available, prior efforts to take this into account have yielded only small gains over 2-frame methods. In this paper, we revisit Sand and Teller’s “particle video” approach, and study pixel tracking as a long-range motion estimation problem, where every pixel is described with a trajectory that locates it in multiple future frames. We re-build this classic approach using components that drive the current state-of-the-art in flow and object tracking, such as dense cost maps, iterative optimization, and learned appearance updates. We train our models using long-range amodal point trajectories mined from existing optical flow data that we synthetically augment with multi-frame occlusions. We test our approach in trajectory estimation benchmarks and in keypoint label propagation tasks, and compare favorably against state-of-the-art optical flow and feature tracking methods.
Project page: https://particle-video-revisited.github.io.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The countable dots on playing cards, dice, or dominoes are also called “pips”.
References
Biggs, B., Roddick, T., Fitzgibbon, A., Cipolla, R.: Creatures great and SMAL: recovering the shape and motion of animals from video. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_1
Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000 (Cat. No. PR00662), vol. 2, pp. 690–696 (2000)
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 500–513 (2011)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: ICLR (2021)
Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. (IJRR) 32, 1231–1237 (2013)
Germain, H., Lepetit, V., Bourmaud, G.: Visual correspondence hallucination: towards geometric reasoning. In: ICLR (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)
Jabri, A., Owens, A., Efros, A.A.: Space-time correspondence as a contrastive random walk. In: Advances in Neural Information Processing Systems (2020)
Janai, J., Güney, F., Ranjan, A., Black, M., Geiger, A.: Unsupervised learning of multi-frame optical flow with occlusions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 713–731. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_42
Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., Yi, K.M.: COTR: correspondence transformer for matching across images. In: ICCV (2021)
Kay, W., et al.: The kinetics human action video dataset. arXiv:1705.06950 (2017)
Kong, C., Lucey, S.: Deep non-rigid structure from motion with missing data. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4365–4377 (2021)
Lai, Z., Xie, W.: Self-supervised learning for video correspondence flow. In: BMVC (2019)
Lai, Z., Lu, E., Xie, W.: MAST: a memory-augmented self-supervised tracker. In: CVPR (2020)
Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision, vol. 81. Vancouver (1981)
Matthews, L., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 810–815 (2004)
Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR (2016)
Novotny, D., Ravi, N., Graham, B., Neverova, N., Vedaldi, A.: C3DPO: canonical 3D pose networks for non-rigid structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 DAVIS challenge on video object segmentation. arXiv:1704.00675 (2017)
Ren, Z., Gallo, O., Sun, D., Yang, M.H., Sudderth, E.B., Kautz, J.: A fusion approach for multi-frame optical flow estimation. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) (2019)
Salgado, A., Sánchez, J.: Temporal constraints in large optical flow estimation. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 709–716. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75867-9_89
Sand, P., Teller, S.: Particle video: long-range motion estimation using point trajectories. In: CVPR, vol. 2, pp. 2195–2202 (2006)
Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X_45
Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 11006, p. 1100612. International Society for Optics and Photonics (2019)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)
Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_32
Sundararaman, R., De Almeida Braga, C., Marchand, E., Pettre, J.: Tracking pedestrian heads in dense crowd. In: CVPR, pp. 3865–3875 (2021)
Taketomi, T., Uchiyama, H., Ikeda, S.: Visual slam algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9(1), 1–11 (2017)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow (2020). https://github.com/princeton-vl/RAFT
Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. ArXiv abs/2105.01601 (2021)
Tomasi, C., Kanade, T.: Detection and tracking of point. Int. J. Comput. Vis. 9, 137–154 (1991)
Valmadre, J., et al.: Long-term tracking in the wild: a benchmark. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 692–707. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_41
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, Q., Zhou, X., Hariharan, B., Snavely, N.: Learning feature descriptors using camera pose supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 757–774. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_44
Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: CVPR (2019)
Wiles, O., Ehrhardt, S., Zisserman, A.: Co-attention for conditioned image matching. In: CVPR (2021)
Xu, J., Wang, X.: Rethinking self-supervised correspondence learning: a video frame-level similarity perspective. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10075–10085, October 2021
Xu, N., et al.: YouTube-VOS: sequence-to-sequence video object segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 603–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_36
Yang, C., Lamdouar, H., Lu, E., Zisserman, A., Xie, W.: Self-supervised video object segmentation by motion grouping. In: ICCV (2021)
Yang, G., et al.: LASR: learning articulated shape reconstruction from a monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15980–15989 (2021)
Yang, G., et al.: ViSER: video-specific surface embeddings for articulated 3D shape reconstruction. In: NeurIPS (2021)
Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II. IEEE (2004)
Acknowledgement
This material is based upon work supported by Toyota Research Institute (TRI), US Army contract W911NF20D0002, a DARPA Young Investigator Award, an NSF CAREER award, an AFOSR Young Investigator Award, and DARPA Machine Common Sense. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Army or the United States Air Force.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Harley, A.W., Fang, Z., Fragkiadaki, K. (2022). Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-20047-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20046-5
Online ISBN: 978-3-031-20047-2
eBook Packages: Computer ScienceComputer Science (R0)