Skip to main content

Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13682))

Included in the following conference series:

Abstract

The current popular two-stream, two-stage tracking framework extracts the template and the search region features separately and then performs relation modeling, thus the extracted features lack the awareness of the target and have limited target-background discriminability. To tackle the above issue, we propose a novel one-stream tracking (OSTrack) framework that unifies feature learning and relation modeling by bridging the template-search image pairs with bidirectional information flows. In this way, discriminative target-oriented features can be dynamically extracted by mutual guidance. Since no extra heavy relation modeling module is needed and the implementation is highly parallelized, the proposed tracker runs at a fast speed. To further improve the inference efficiency, an in-network candidate early elimination module is proposed based on the strong similarity prior calculated in the one-stream framework. As a unified framework, OSTrack achieves state-of-the-art performance on multiple benchmarks, in particular, it shows impressive results on the one-shot tracking benchmark GOT-10k, i.e.,, achieving 73.7% AO, improving the existing best result (SwinTrack) by 4.3%. Besides, our method maintains a good performance-speed trade-off and shows faster convergence. The code and models are available at https://github.com/botaoye/OSTrack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: ICCV, pp. 6182–6191 (2019)

    Google Scholar 

  3. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR, pp. 2544–2550 (2010)

    Google Scholar 

  4. Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In: CVPR, pp. 8126–8135 (2021)

    Google Scholar 

  5. Dai, K., Zhang, Y., Wang, D., Li, J., Lu, H., Yang, X.: High-performance long-term tracking with meta-updater. In: CVPR, pp. 6298–6307 (2020)

    Google Scholar 

  6. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Atom: accurate tracking by overlap maximization. In: CVPR, pp. 4660–4669 (2019)

    Google Scholar 

  7. Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: ECO: efficient convolution operators for tracking. In: CVPR, pp. 6638–6646 (2017)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16 x 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  11. Fan, H., et al.: LaSOT: a high-quality large-scale single object tracking benchmark. IJCV 129(2), 439–461 (2021)

    Article  Google Scholar 

  12. Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: CVPR, pp. 5374–5383 (2019)

    Google Scholar 

  13. Fu, Z., Liu, Q., Fu, Z., Wang, Y.: STMTrack: template-free visual tracking with space-time memory networks. In: CVPR, pp. 13774–13783 (2021)

    Google Scholar 

  14. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. TPAMI 37(3), 583–596 (2014)

    Article  Google Scholar 

  17. Huang, L., Zhao, X., Huang, K.: Got-10k: a large high-diversity benchmark for generic object tracking in the wild. TPAMI 43(5), 1562–1577 (2019)

    Article  Google Scholar 

  18. Jung, I., Son, J., Baek, M., Han, B.: Real-time mdnet. In: ECCV, pp. 83–98 (2018)

    Google Scholar 

  19. Kiani Galoogahi, H., Fagg, A., Huang, C., Ramanan, D., Lucey, S.: Need for speed: a benchmark for higher frame rate object tracking. In: ICCV, pp. 1125–1134 (2017)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS, vol. 25 (2012)

    Google Scholar 

  21. Law, H., Deng, J.: CornerNet: Detecting objects as paired keypoints. In: ECCV, pp. 734–750 (2018)

    Google Scholar 

  22. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: CVPR, pp. 4282–4291 (2019)

    Google Scholar 

  23. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: CVPR, pp. 8971–8980 (2018)

    Google Scholar 

  24. Liang, Y., GE, C., Tong, Z., Song, Y., Wang, J., Xie, P.: EViT: expediting vision transformers via token reorganizations. In: ICLR (2022)

    Google Scholar 

  25. Lin, L., Fan, H., Xu, Y., Ling, H.: SwinTrack: a simple and strong baseline for transformer tracking. arXiv preprint arXiv:2112.00995 (2021)

  26. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV, pp. 740–755 (2014)

    Google Scholar 

  27. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  28. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2018)

    Google Scholar 

  29. Mayer, C., Danelljan, M., Paudel, D.P., Van Gool, L.: Learning target candidate association to keep track of what not to track. In: ICCV, pp. 13444–13454 (2021)

    Google Scholar 

  30. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: ECCV, pp. 445–461 (2016)

    Google Scholar 

  31. Muller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: a large-scale dataset and benchmark for object tracking in the wild. In: ECCV, pp. 300–317 (2018)

    Google Scholar 

  32. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR, pp. 4293–4302 (2016)

    Google Scholar 

  33. Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.J.: DynamicViT: efficient vision transformers with dynamic token sparsification. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  34. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR, pp. 658–666 (2019)

    Google Scholar 

  35. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: ImageNet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021)

  36. Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How to train your ViT? data, augmentation, and regularization in vision transformers. arXiv preprint arXiv:2106.10270 (2021)

  37. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICML, pp. 10347–10357 (2021)

    Google Scholar 

  38. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  39. Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam R-CNN: visual tracking by re-detection. In: CVPR, pp. 6578–6588 (2020)

    Google Scholar 

  40. Wang, G., Luo, C., Sun, X., Xiong, Z., Zeng, W.: Tracking by instance detection: a meta-learning approach. In: CVPR, pp. 6288–6297 (2020)

    Google Scholar 

  41. Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: CVPR, pp. 1571–1580 (2021)

    Google Scholar 

  42. Wang, X., et al.: Towards more flexible and accurate object tracking with natural language: algorithms and benchmark. In: CVPR, pp. 13763–13773 (2021)

    Google Scholar 

  43. Yan, B., Peng, H., Fu, J., Wang, D., Lu, H.: Learning Spatio-temporal transformer for visual tracking. In: ICCV, pp. 10448–10457 (2021)

    Google Scholar 

  44. Yin, H., Vahdat, A., Alvarez, J., Mallya, A., Kautz, J., Molchanov, P.: AdaViT: adaptive tokens for efficient vision transformer. arXiv preprint arXiv:2112.07658 (2021)

  45. Zhang, Z., Liu, Y., Wang, X., Li, B., Hu, W.: Learn to match: automatic matching network design for visual tracking. In: ICCV, pp. 13339–13348 (2021)

    Google Scholar 

  46. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: ECCV, pp. 771–787 (2020)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by Natural Science Foundation of China (NSFC): 61976203 and 61876171. Thanks Zhipeng Zhang for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1476 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, B., Chang, H., Ma, B., Shan, S., Chen, X. (2022). Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics