Skip to main content

E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13682))

Included in the following conference series:

  • 3147 Accesses

Abstract

Minimal solutions for relative rotation and translation estimation tasks have been explored in different scenarios, typically relying on the so-called co-visibility graphs. However, how to build direct rotation relationships between two frames without overlap is still an open topic, which, if solved, could greatly improve the accuracy of visual odometry. In this paper, a new minimal solution is proposed to solve relative rotation estimation between two images without overlapping areas by exploiting a new graph structure, which we call Extensibility Graph (E-Graph). Differently from a co-visibility graph, high-level landmarks, including vanishing directions and plane normals, are stored in our E-Graph, which are geometrically extensible. Based on E-Graph, the rotation estimation problem becomes simpler and more elegant, as it can deal with pure rotational motion and requires fewer assumptions, e.g. Manhattan/Atlanta World, planar/vertical motion. Finally, we embed our rotation estimation strategy into a complete camera tracking and mapping system which obtains 6-DoF camera poses and a dense 3D mesh model. Extensive experiments on public benchmarks demonstrate that the proposed method achieves state-of-the-art tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrew, A.M.: Multiple view geometry in computer vision. Kybernetes 30(9/10), 1333–1341 (2001)

    Google Scholar 

  2. Bazin, J.C., Pollefeys, M.: 3-line RANSAC for orthogonal vanishing point detection. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4282–4287. IEEE (2012)

    Google Scholar 

  3. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: an accurate open-source library for visual, visual-inertial and multi-map slam. arXiv preprint arXiv:2007.11898 (2020)

  4. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: real-time globally consistent 3d reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. 36(4), 1 (2017)

    Article  Google Scholar 

  5. Feng, C., Taguchi, Y., Kamat, V.R.: fast plane extraction in organized point clouds using agglomerative hierarchical clustering. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6218–6225. IEEE (2014)

    Google Scholar 

  6. Galvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Rob. 28(5), 1188–1197 (2012). https://doi.org/10.1109/TRO.2012.2197158

    Article  Google Scholar 

  7. Gao, X., Wang, R., Demmel, N., Cremers, D.: LDSO: direct sparse odometry with loop closure. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2198–2204. IEEE (2018)

    Google Scholar 

  8. Gomez-Ojeda, R., Moreno, F.A., Zuniga-Noël, D., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-Slam: a stereo slam system through the combination of points and line segments. IEEE Trans. Rob. 35(3), 734–746 (2019)

    Article  Google Scholar 

  9. Guan, B., Zhao, J., Li, Z., Sun, F., Fraundorfer, F.: Minimal solutions for relative pose with a single affine correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1929–1938 (2020)

    Google Scholar 

  10. Handa, A., Whelan, T., McDonald, J., Davison, A.: A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM. In: IEEE International Conference on Robotics and Automation (2014)

    Google Scholar 

  11. Hsiao, M., Westman, E., Zhang, G., Kaess, M.: Keyframe-based dense planar slam. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5110–5117 (2017). https://doi.org/10.1109/ICRA.2017.7989597

  12. Joo, K., Oh, T.H., Kim, J., Kweon, I.S.: Globally optimal manhattan frame estimation in real-time. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1763–1771 (2016)

    Google Scholar 

  13. Joo, K., Oh, T.H., Rameau, F., Bazin, J.C., Kweon, I.S.: Linear RGB-D SLAM for Atlanta world. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1077–1083. IEEE (2020)

    Google Scholar 

  14. Kim, P., Coltin, B., Jin Kim, H.: Linear RGB-D SLAM for planar environments. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 333–348 (2018)

    Google Scholar 

  15. Kim, P., Coltin, B., Kim, H.J.: Indoor RGB-D compass from a single line and plane. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4673–4680 (2018)

    Google Scholar 

  16. Lee, J.K., Yoon, K.J.: Real-time joint estimation of camera orientation and vanishing points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1866–1874 (2015)

    Google Scholar 

  17. Li, H., Xing, Y., Zhao, J., Bazin, J., Liu, Z., Liu, Y.: Leveraging structural regularity of Atlanta world for monocular slam. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2412–2418 (2019). https://doi.org/10.1109/ICRA.2019.8793716

  18. Li, X., Li, Y., Pınar Örnek, E., Lin, J., Tombari, F.: Co-planar parametrization for stereo-slam and visual-inertial odometry. arXiv e-prints, arXiv-2009 (2020)

    Google Scholar 

  19. Li, Y., Brasch, N., Wang, Y., Navab, N., Tombari, F.: Structure-slam: Low-drift monocular slam in indoor environments. IEEE Rob. Autom. Lett. 5(4), 6583–6590 (2020)

    Article  Google Scholar 

  20. Li, Y., Yunus, R., Brasch, N., Navab, N., Tombari, F.: RGB-D SLAM with structural regularities. In: 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021)

    Google Scholar 

  21. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM SIGGRAPh Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  22. Ma, L., Kerl, C., Stückler, J., Cremers, D.: CPA-SLAM: consistent plane-model alignment for direct RGB-d slam. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1285–1291 (2016). https://doi.org/10.1109/ICRA.2016.7487260

  23. Mei, C., Sibley, G., Newman, P.: Closing loops without places. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3738–3744. IEEE (2010)

    Google Scholar 

  24. Mur-Artal, Raúl, M.J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015). https://doi.org/10.1109/TRO.2015.2463671

  25. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  26. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017). https://doi.org/10.1109/TRO.2017.2705103

    Article  Google Scholar 

  27. Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph. 32(6), 1–11 (2013)

    Article  Google Scholar 

  28. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  29. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends in Rob. 4(1), 1–104 (2015)

    Article  Google Scholar 

  30. Rosinol, A., Sattler, T., Pollefeys, M., Carlone, L.: Incremental visual-inertial 3d mesh generation with structural regularities. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8220–8226. IEEE (2019)

    Google Scholar 

  31. Salaün, Y., Marlet, R., Monasse, P.: Robust and accurate line- and/or point-based pose estimation without manhattan assumptions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 801–818. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_49

    Chapter  Google Scholar 

  32. Schöps, T., Sattler, T., Pollefeys, M.: Bad slam: Bundle adjusted direct RGB-D SLAM. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 134–144 (2019). https://doi.org/10.1109/CVPR.2019.00022

  33. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  34. Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1250–1257. IEEE (2009)

    Google Scholar 

  35. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)

    Article  Google Scholar 

  36. Wang, R., Schworer, M., Cremers, D.: Stereo DSO: large-scale direct sparse visual odometry with stereo cameras. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3903–3911 (2017)

    Google Scholar 

  37. Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., Davison, A.: ElasticFusion: dense SLAM without a pose graph. In: Conference on Robotics: Science and Systems (2015)

    Google Scholar 

  38. Yunus, R., Li, Y., Tombari, F.: Manhattanslam: robust planar tracking and mapping leveraging mixture of Manhattan frames. arXiv preprint arXiv:2103.15068 (2021)

  39. Zhang, X., Wang, W., Qi, X., Liao, Z., Wei, R.: Point-plane SLAM using supposed planes for indoor environments. Sensors 19(17), 3795 (2019)

    Article  Google Scholar 

  40. Zhao, J., Kneip, L., He, Y., Ma, J.: Minimal case relative pose computation using ray-point-ray features. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1176–1190 (2019)

    Google Scholar 

  41. Zhou, H., Zou, D., Pei, L., Ying, R., Liu, P., Yu, W.: Structslam: visual SLAM with building structure lines. IEEE Trans. Veh. Technol. 64(4), 1364–1375 (2015). https://doi.org/10.1109/TVT.2015.2388780

    Article  Google Scholar 

  42. Zhou, Q.Y., Koltun, V.: Dense scene reconstruction with points of interest. ACM Trans. Graph. 32(4), 1–8 (2013)

    Article  Google Scholar 

  43. Zhou, Y., Kneip, L., Rodriguez, C., Li, H.: Divide and conquer: efficient density-based tracking of 3D sensors in manhattan worlds. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_1

    Chapter  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Xin Li, Keisuke Tateno, Nicolas Brasch and Dr. Liang Zhao for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 9379 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Tombari, F. (2022). E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics