Skip to main content

Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13682))

Included in the following conference series:

Abstract

Predicting diverse human motions given a sequence of historical poses has received increasing attention. Despite rapid progress, existing work captures the multi-modal nature of human motions primarily through likelihood-based sampling, where the mode collapse has been widely observed. In this paper, we propose a simple yet effective approach that disentangles randomly sampled codes with a deterministic learnable component named anchors to promote sample precision and diversity. Anchors are further factorized into spatial anchors and temporal anchors, which provide attractively interpretable control over spatial-temporal disparity. In principle, our spatial-temporal anchor-based sampling (STARS) can be applied to different motion predictors. Here we propose an interaction-enhanced spatial-temporal graph convolutional network (IE-STGCN) that encodes prior knowledge of human motions (e.g., spatial locality), and incorporate the anchors into it. Extensive experiments demonstrate that our approach outperforms state of the art in both stochastic and deterministic prediction, suggesting it as a unified framework for modeling human motions. Our code and pretrained models are available at https://github.com/Sirui-Xu/STARS.

Y.-X. Wang and L.-Y. Gui—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aksan, E., Kaufmann, M., Hilliges, O.: Structured prediction helps 3D human motion modelling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7144–7153 (2019)

    Google Scholar 

  2. Aliakbarian, S., Saleh, F.S., Salzmann, M., Petersson, L., Gould, S.: A stochastic conditioning scheme for diverse human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5223–5232 (2020)

    Google Scholar 

  3. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  4. Barsoum, E., Kender, J.R., Liu, Z.: HP-GAN: Probabilistic 3D Human Motion Prediction via GAN. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1418–1427 (2018)

    Google Scholar 

  5. Bhattacharyya, A., Schiele, B., Fritz, M.: Accurate and diverse sampling of sequences based on a “best of many" sample objective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8485–8493 (2018)

    Google Scholar 

  6. Butepage, J., Black, M.J., Kragic, D., Kjellstrom, H.: Deep representation learning for human motion prediction and classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6158–6166 (2017)

    Google Scholar 

  7. Bütepage, J., Kjellström, H., Kragic, D.: Anticipating many futures: Online human motion prediction and generation for human-robot interaction. In: IEEE International Conference on Robotics and Automation, pp. 4563–4570 (2018)

    Google Scholar 

  8. Cao, Z., et al.: Long-Term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23

    Chapter  Google Scholar 

  9. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  10. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449 (2019)

  11. Chao, Y.W., Yang, J., Price, B., Cohen, S., Deng, J.: Forecasting human dynamics from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 548–556 (2017)

    Google Scholar 

  12. Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F.: Context-aware human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6992–7001 (2020)

    Google Scholar 

  13. Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: International Conference on Robotics and Automation, pp. 2090–2096 (2019)

    Google Scholar 

  14. Cui, Q., Sun, H.: Towards accurate 3D human motion prediction from incomplete observations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4801–4810 (2021)

    Google Scholar 

  15. Cui, Q., Sun, H., Yang, F.: Learning dynamic relationships for 3D human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6519–6527 (2020)

    Google Scholar 

  16. Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: MSR-GCN: multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11467–11476 (2021)

    Google Scholar 

  17. Dilokthanakul, N., et al.: Deep unsupervised clustering with Gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648 (2016)

  18. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4346–4354 (2015)

    Google Scholar 

  19. Goodfellow, I., et al.: Generative adversarial nets. In: 27th Proceedings of the International Conference on Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  20. Gui, L.Y., Wang, Y.X., Liang, X., Moura, J.M.F.: Adversarial geometry-aware human motion prediction. In: European Conference on Computer Vision, pp. 786–803 (2018)

    Google Scholar 

  21. Gui, L.Y., Wang, Y.X., Ramanan, D., Moura, J.M.F.: Few-shot human motion prediction via meta-learning. In: European Conference on Computer Vision, pp. 432–450 (2018)

    Google Scholar 

  22. Gui, L.Y., Zhang, K., Wang, Y.X., Liang, X., Moura, J.M.F., Veloso, M.: Teaching robots to predict human motion. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 562–567 (2018)

    Google Scholar 

  23. Gurumurthy, S., Kiran Sarvadevabhatla, R., Venkatesh Babu, R.: DeLiGAN : generative adversarial networks for diverse and limited data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 166–174 (2017)

    Google Scholar 

  24. Han, T., Xie, W., Zisserman, A.: Memory-augmented dense predictive coding for video representation learning. In: European Conference on Computer Vision, pp. 312–329 (2020)

    Google Scholar 

  25. Hassan, M., et al.: Stochastic scene-aware motion prediction. In: Proceedings of the International Conference on Computer Vision, pp. 11374–11384 (2021)

    Google Scholar 

  26. Hernandez, A., Gall, J., Moreno-Noguer, F.: Human motion prediction via spatio-temporal inpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7134–7143 (2019)

    Google Scholar 

  27. Holden, D., Komura, T., Saito, J.: Phase-functioned neural networks for character control. ACM Trans. Graph. 36, 1–13 (2017)

    Article  Google Scholar 

  28. Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. 35, 1–11 (2016)

    Article  Google Scholar 

  29. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  30. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Google Scholar 

  31. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5308–5317 (2016)

    Google Scholar 

  32. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  33. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  34. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 14–29 (2016)

    Article  Google Scholar 

  35. Koppula, H.S., Saxena, A.: Anticipating human activities for reactive robotic response. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2071–2071 (2013)

    Google Scholar 

  36. Kothari, P., Sifringer, B., Alahi, A.: Interpretable social anchors for human trajectory forecasting in crowds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15551–15561 (2021)

    Google Scholar 

  37. Kundu, J.N., Gor, M., Babu, R.V.: BiHMP-GAN: Bidirectional 3D human motion prediction GAN. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8553–8560 (2019)

    Google Scholar 

  38. Lasota, P.A., Shah, J.A.: A multiple-predictor approach to human motion prediction. In: IEEE International Conference on Robotics and Automation, pp. 2300–2307 (2017)

    Google Scholar 

  39. Lebailly, T., Kiciroglu, S., Salzmann, M., Fua, P., Wang, W.: Motion prediction using temporal inception module. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  40. Li, C., Zhang, Z., Lee, W.S., Lee, G.H.: Convolutional sequence to sequence model for human dynamics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5226–5234 (2018)

    Google Scholar 

  41. Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3D skeleton based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 214–223 (2020)

    Google Scholar 

  42. Li, X., Li, H., Joo, H., Liu, Y., Sheikh, Y.: Structure from recurrent motion: From rigidity to recurrency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3032–3040 (2018)

    Google Scholar 

  43. Lin, X., Amer, M.R.: Human motion modeling using DVGANs. arXiv preprint arXiv:1804.10652 (2018)

  44. Ling, H.Y., Zinno, F., Cheng, G., Van De Panne, M.: Character controllers using motion VAEs. ACM Trans. Graph. 39(4), 40–1 (2020)

    Article  Google Scholar 

  45. Lui, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  46. Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B.: Multimodal motion prediction with stacked transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7577–7586 (2021)

    Google Scholar 

  47. Liu, Z., et al.: Motion prediction using trajectory cues. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13299–13308 (2021)

    Google Scholar 

  48. Luber, M., Stork, J.A., Tipaldi, G.D., Arras, K.O.: People tracking with human motion predictions from social forces. In: IEEE International Conference on Robotics and Automation, pp. 464–469 (2010)

    Google Scholar 

  49. Lyu, K., Liu, Z., Wu, S., Chen, H., Zhang, X., Yin, Y.: Learning human motion prediction via stochastic differential equations. In: Proceedings of ACM International Conference on Multimedia, pp. 4976–4984 (2021)

    Google Scholar 

  50. Mao, W., Liu, M., Salzmann, M.: History repeats itself: human motion prediction via motion attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 474–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_28

    Chapter  Google Scholar 

  51. Mao, W., Liu, M., Salzmann, M.: Generating smooth pose sequences for diverse human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13309–13318 (2021)

    Google Scholar 

  52. Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9489–9497 (2019)

    Google Scholar 

  53. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2891–2900 (2017)

    Google Scholar 

  54. Paden, B., Cáp, M., Yong, S.Z., Yershov, D.S., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1, 33–55 (2016)

    Article  Google Scholar 

  55. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318. PMLR (2013)

    Google Scholar 

  56. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: 32nd Proceedings of the International Conference on Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  57. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: CoverNet: multimodal behavior prediction using trajectory sets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14074–14083 (2020)

    Google Scholar 

  58. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530–1538. PMLR (2015)

    Google Scholar 

  59. Rudenko, A., Palmieri, L., Arras, K.O.: Joint long-term prediction of human motion using a planning-based social force approach. In: IEEE International Conference on Robotics and Automation, pp. 4571–4577 (2018)

    Google Scholar 

  60. Sigal, L., Balan, A.O., Black, M.J., HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion: HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vision 87(1), 4–27 (2010)

    Article  Google Scholar 

  61. Sofianos, T., Sampieri, A., Franco, L., Galasso, F.: Space-Time-Separable Graph Convolutional Network for pose forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11209–11218 (2021)

    Google Scholar 

  62. Starke, S., Zhao, Y., Zinno, F., Komura, T.: Neural animation layering for synthesizing martial arts movements. ACM Trans. Graphi. 40, 1–16 (2021)

    Article  Google Scholar 

  63. Sutskever, I., Martens, J., Hinton, G.: Generating text with recurrent neural networks. In: International Conference on Machine Learning, pp. 1017–1024 (2011)

    Google Scholar 

  64. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting by generating pose futures. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3332–3341 (2017)

    Google Scholar 

  65. Wang, B., Adeli, E., Chiu, H.k., Huang, D.A., Niebles, J.C.: Imitation learning for human pose prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7124–7133 (2019)

    Google Scholar 

  66. Yan, X., et al.: MT-VAE: learning motion transformations to generate multimodal human dynamics. In: European Conference on Computer Vision, pp. 276–293 (2018)

    Google Scholar 

  67. Yan, Z., Zhai, D.H., Xia, Y.: DMS-GCN: dynamic mutiscale spatiotemporal graph convolutional networks for human motion prediction. arXiv preprint arXiv:2112.10365 (2021)

  68. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1385–1392 (2011)

    Google Scholar 

  69. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  70. Yuan, Y., Kitani, K.: Diverse trajectory forecasting with determinantal point processes. arXiv preprint arXiv:1907.04967 (2019)

  71. Yuan, Y., Kitani, K.: Ego-pose estimation and forecasting as real-time PD control. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10082–10092 (2019)

    Google Scholar 

  72. Yuan, Y., Kitani, K.: DLow: diversifying latent flows for diverse human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 346–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_20

    Chapter  Google Scholar 

  73. Yuan, Y., Kitani, K.: Residual force control for agile human behavior imitation and extended motion synthesis. Adv. Neural. Inf. Process. Syst. 33, 21763–21774 (2020)

    Google Scholar 

  74. Zhang, J.Y., Felsen, P., Kanazawa, A., Malik, J.: Predicting 3D human dynamics from video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7114–7123 (2019)

    Google Scholar 

  75. Zhang, Y., Black, M.J., Tang, S.: We are more than our joints: predicting how 3D bodies move. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3372–3382 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSF Grant 2106825, the Jump ARCHES endowment through the Health Care Engineering Systems Center, the New Frontiers Initiative, the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign through the NCSA Fellows program, and the IBM-Illinois Discovery Accelerator Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirui Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 17048 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S., Wang, YX., Gui, LY. (2022). Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics