Skip to main content

On Multi-Domain Long-Tailed Recognition, Imbalanced Domain Generalization and Beyond

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13680))

Included in the following conference series:

Abstract

Real-world data often exhibit imbalanced label distributions. Existing studies on data imbalance focus on single-domain settings, i.e., samples are from the same data distribution. However, natural data can originate from distinct domains, where a minority class in one domain could have abundant instances from other domains. We formalize the task of Multi-Domain Long-Tailed Recognition (MDLT), which learns from multi-domain imbalanced data, addresses label imbalance, domain shift, and divergent label distributions across domains, and generalizes to all domain-class pairs. We first develop the domain-class transferability graph, and show that such transferability governs the success of learning in MDLT. We then propose BoDA, a theoretically grounded learning strategy that tracks the upper bound of transferability statistics, and ensures balanced alignment and calibration across imbalanced domain-class distributions. We curate five MDLT benchmarks based on widely-used multi-domain datasets, and compare BoDA to twenty algorithms that span different learning strategies. Extensive and rigorous experiments verify the superior performance of BoDA. Further, as a byproduct, BoDA establishes new state-of-the-art on Domain Generalization benchmarks, highlighting the importance of addressing data imbalance across domains, which can be crucial for improving generalization to unseen domains. Code and data are available at: https://github.com/YyzHarry/multi-domain-imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  2. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 472–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_28

    Chapter  Google Scholar 

  3. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  4. Blanchard, G., Deshmukh, A.A., Dogan, U., Lee, G., Scott, C.: Domain generalization by marginal transfer learning. J. Mach. Learn. Res. 22(2), 1–55 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  6. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS (2019)

    Google Scholar 

  7. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving Jigsaw puzzles. In: CVPR (2019)

    Google Scholar 

  8. Carroll, J.D., Arabie, P.: Multidimensional scaling. In: Measurement, Judgment and Decision Making, pp. 179–250 (1998)

    Google Scholar 

  9. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  10. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR (2019)

    Google Scholar 

  11. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)

    Article  Google Scholar 

  12. Dong, Q., Gong, S., Zhu, X.: Imbalanced deep learning by minority class incremental rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1367–1381 (2019)

    Article  Google Scholar 

  13. Dredze, M., Kulesza, A., Crammer, K.: Multi-domain learning by confidence-weighted parameter combination. Mach. Learn. 79(1), 123–149 (2010)

    Article  MathSciNet  Google Scholar 

  14. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: on the utilization of multiple datasets and web images for softening bias. In: ICCV (2013)

    Google Scholar 

  15. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  16. Globerson, A., Chechik, G., Pereira, F., Tishby, N.: Euclidean embedding of co-occurrence data. In: NeurIPS (2004)

    Google Scholar 

  17. Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood components analysis. In: NeurIPS (2004)

    Google Scholar 

  18. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: ICLR (2021)

    Google Scholar 

  20. He, H., Bai, Y., Garcia, E.A., Li, S.: AdaSyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on Neural Networks, pp. 1322–1328 (2008)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  22. Huang, C., Li, Y., Chen, C.L., Tang, X.: Deep imbalanced learning for face recognition and attribute prediction. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  23. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  25. Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (REX). arXiv preprint arXiv:2003.00688 (2020)

  26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  27. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In: AAAI (2018)

    Google Scholar 

  28. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017)

    Google Scholar 

  29. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: CVPR (2018)

    Google Scholar 

  30. Li, T., et al.: Targeted supervised contrastive learning for long-tailed recognition. arXiv preprint arXiv:2111.13998 (2021)

  31. Li, Y., Gong, M., Tian, X., Liu, T., Tao, D.: Domain generalization via conditional invariant representations. In: AAAI (2018)

    Google Scholar 

  32. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  33. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR (2019)

    Google Scholar 

  34. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML (2013)

    Google Scholar 

  35. Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing style bias. In: CVPR (2021)

    Google Scholar 

  36. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  37. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  38. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV (2019)

    Google Scholar 

  39. Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al.: Balanced meta-softmax for long-tailed visual recognition. In: NeurIPS (2020)

    Google Scholar 

  40. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: on the importance of regularization for worst-case generalization. In: ICLR (2020)

    Google Scholar 

  41. Schoenauer-Sebag, A., Heinrich, L., Schoenauer, M., Sebag, M., Wu, L.F., Altschuler, S.J.: Multi-domain adversarial learning. In: ICLR (2019)

    Google Scholar 

  42. Shi, Y., et al.: Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937 (2021)

  43. Shu, J., et al.: Meta-weight-net: learning an explicit mapping for sample weighting. arXiv preprint arXiv:1902.07379 (2019)

  44. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: NeurIPS (2016)

    Google Scholar 

  45. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  46. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  47. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR (2017)

    Google Scholar 

  48. Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.: Long-tailed recognition by routing diverse distribution-aware experts. In: ICLR (2021)

    Google Scholar 

  49. Xiao, T., Li, H., Ouyang, W., Wang, X.: Learning deep feature representations with domain guided dropout for person re-identification. In: CVPR (2016)

    Google Scholar 

  50. Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: AAAI (2020)

    Google Scholar 

  51. Yang, Y., Hospedales, T.M.: A unified perspective on multi-domain and multi-task learning. In: ICLR (2015)

    Google Scholar 

  52. Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning. In: NeurIPS (2020)

    Google Scholar 

  53. Yang, Y., Zha, K., Chen, Y.C., Wang, H., Katabi, D.: Delving into deep imbalanced regression. In: ICML (2021)

    Google Scholar 

  54. Zhang, M., Marklund, H., Gupta, A., Levine, S., Finn, C.: Adaptive risk minimization: a meta-learning approach for tackling group shift. arXiv preprint arXiv:2007.02931 (2020)

  55. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: ICCV (2017)

    Google Scholar 

  56. Zhang, Y., Hooi, B., Hong, L., Feng, J.: Test-agnostic long-tailed recognition by test-time aggregating diverse experts with self-supervision. arXiv preprint arXiv:2107.09249 (2021)

  57. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. arXiv preprint arXiv:2110.04596 (2021)

  58. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: CVPR (2020)

    Google Scholar 

  59. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization in vision: a survey. arXiv preprint arXiv:2103.02503 (2021)

  60. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In: ICLR (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the GIST-MIT Research Collaboration grant funded by GIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhe Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3344 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Wang, H., Katabi, D. (2022). On Multi-Domain Long-Tailed Recognition, Imbalanced Domain Generalization and Beyond. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20044-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20043-4

  • Online ISBN: 978-3-031-20044-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics