Abstract
Real-world data often exhibit imbalanced label distributions. Existing studies on data imbalance focus on single-domain settings, i.e., samples are from the same data distribution. However, natural data can originate from distinct domains, where a minority class in one domain could have abundant instances from other domains. We formalize the task of Multi-Domain Long-Tailed Recognition (MDLT), which learns from multi-domain imbalanced data, addresses label imbalance, domain shift, and divergent label distributions across domains, and generalizes to all domain-class pairs. We first develop the domain-class transferability graph, and show that such transferability governs the success of learning in MDLT. We then propose BoDA, a theoretically grounded learning strategy that tracks the upper bound of transferability statistics, and ensures balanced alignment and calibration across imbalanced domain-class distributions. We curate five MDLT benchmarks based on widely-used multi-domain datasets, and compare BoDA to twenty algorithms that span different learning strategies. Extensive and rigorous experiments verify the superior performance of BoDA. Further, as a byproduct, BoDA establishes new state-of-the-art on Domain Generalization benchmarks, highlighting the importance of addressing data imbalance across domains, which can be crucial for improving generalization to unseen domains. Code and data are available at: https://github.com/YyzHarry/multi-domain-imbalance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)
Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 472–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_28
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)
Blanchard, G., Deshmukh, A.A., Dogan, U., Lee, G., Scott, C.: Domain generalization by marginal transfer learning. J. Mach. Learn. Res. 22(2), 1–55 (2021)
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS (2019)
Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving Jigsaw puzzles. In: CVPR (2019)
Carroll, J.D., Arabie, P.: Multidimensional scaling. In: Measurement, Judgment and Decision Making, pp. 179–250 (1998)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR (2019)
De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)
Dong, Q., Gong, S., Zhu, X.: Imbalanced deep learning by minority class incremental rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1367–1381 (2019)
Dredze, M., Kulesza, A., Crammer, K.: Multi-domain learning by confidence-weighted parameter combination. Mach. Learn. 79(1), 123–149 (2010)
Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: on the utilization of multiple datasets and web images for softening bias. In: ICCV (2013)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)
Globerson, A., Chechik, G., Pereira, F., Tishby, N.: Euclidean embedding of co-occurrence data. In: NeurIPS (2004)
Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood components analysis. In: NeurIPS (2004)
Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)
Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: ICLR (2021)
He, H., Bai, Y., Garcia, E.A., Li, S.: AdaSyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on Neural Networks, pp. 1322–1328 (2008)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Huang, C., Li, Y., Chen, C.L., Tang, X.: Deep imbalanced learning for face recognition and attribute prediction. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (REX). arXiv preprint arXiv:2003.00688 (2020)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In: AAAI (2018)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017)
Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: CVPR (2018)
Li, T., et al.: Targeted supervised contrastive learning for long-tailed recognition. arXiv preprint arXiv:2111.13998 (2021)
Li, Y., Gong, M., Tian, X., Liu, T., Tao, D.: Domain generalization via conditional invariant representations. In: AAAI (2018)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)
Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR (2019)
Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML (2013)
Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing style bias. In: CVPR (2021)
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV (2019)
Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al.: Balanced meta-softmax for long-tailed visual recognition. In: NeurIPS (2020)
Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: on the importance of regularization for worst-case generalization. In: ICLR (2020)
Schoenauer-Sebag, A., Heinrich, L., Schoenauer, M., Sebag, M., Wu, L.F., Altschuler, S.J.: Multi-domain adversarial learning. In: ICLR (2019)
Shi, Y., et al.: Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937 (2021)
Shu, J., et al.: Meta-weight-net: learning an explicit mapping for sample weighting. arXiv preprint arXiv:1902.07379 (2019)
Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: NeurIPS (2016)
Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35
Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR (2017)
Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.: Long-tailed recognition by routing diverse distribution-aware experts. In: ICLR (2021)
Xiao, T., Li, H., Ouyang, W., Wang, X.: Learning deep feature representations with domain guided dropout for person re-identification. In: CVPR (2016)
Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: AAAI (2020)
Yang, Y., Hospedales, T.M.: A unified perspective on multi-domain and multi-task learning. In: ICLR (2015)
Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning. In: NeurIPS (2020)
Yang, Y., Zha, K., Chen, Y.C., Wang, H., Katabi, D.: Delving into deep imbalanced regression. In: ICML (2021)
Zhang, M., Marklund, H., Gupta, A., Levine, S., Finn, C.: Adaptive risk minimization: a meta-learning approach for tackling group shift. arXiv preprint arXiv:2007.02931 (2020)
Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: ICCV (2017)
Zhang, Y., Hooi, B., Hong, L., Feng, J.: Test-agnostic long-tailed recognition by test-time aggregating diverse experts with self-supervision. arXiv preprint arXiv:2107.09249 (2021)
Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. arXiv preprint arXiv:2110.04596 (2021)
Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: CVPR (2020)
Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization in vision: a survey. arXiv preprint arXiv:2103.02503 (2021)
Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In: ICLR (2021)
Acknowledgments
This work was supported by the GIST-MIT Research Collaboration grant funded by GIST.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Y., Wang, H., Katabi, D. (2022). On Multi-Domain Long-Tailed Recognition, Imbalanced Domain Generalization and Beyond. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-20044-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20043-4
Online ISBN: 978-3-031-20044-1
eBook Packages: Computer ScienceComputer Science (R0)