Skip to main content

Streamable Neural Fields

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13680))

Included in the following conference series:

Abstract

Neural fields have emerged as a new data representation paradigm and have shown remarkable success in various signal representations. Since they preserve signals in their network parameters, the data transfer by sending and receiving the entire model parameters prevents this emerging technology from being used in many practical scenarios. We propose streamable neural fields, a single model that consists of executable sub-networks of various widths. The proposed architectural and training techniques enable a single network to be streamable over time and reconstruct different qualities and parts of signals. For example, a smaller sub-network produces smooth and low-frequency signals, while a larger sub-network can represent fine details. Experimental results have shown the effectiveness of our method in various domains, such as 2D images, videos, and 3D signed distance functions. Finally, we demonstrate that our proposed method improves training stability, by exploiting parameter sharing. Our code is available at https://github.com/jwcho5576/streamable_nf.

J. Cho and S. Nam—Equal contribution, alphabetically ordered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, R., et al.: Neural additive models: Interpretable machine learning with neural nets. In: Advances in Neural Information Processing Systems, vol. 34, pp. 4699–4711. Curran Associates, Inc. (2021)

    Google Scholar 

  2. Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 608–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_36

    Chapter  Google Scholar 

  3. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: Pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5799–5809, June 2021

    Google Scholar 

  4. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8628–8638, June 2021

    Google Scholar 

  5. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–5948, June 2019

    Google Scholar 

  6. Dupont, E., Kim, H., Eslami, S.M.A., Rezende, D.J., Rosenbaum, D.: From data to functa: Your data point is a function and you should treat it like one. arXiv preprint arXiv:2201.12204 (2022)

  7. Erler, P., Guerrero, P., Ohrhallinger, S., Mitra, N.J., Wimmer, M.: Points2Surf learning implicit surfaces from point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 108–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_7

    Chapter  Google Scholar 

  8. Evci, U., van Merrienboer, B., Unterthiner, T., Pedregosa, F., Vladymyrov, M.: Gradmax: growing neural networks using gradient information. In: International Conference on Learning Representations (2022)

    Google Scholar 

  9. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5501–5510, June 2022

    Google Scholar 

  10. Gall, D.L.: MPEG: a video compression standard for multimedia applications. Commun. ACM 34(4), 46–58 (1991)

    Article  Google Scholar 

  11. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning shape templates with structured implicit functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7154–7164 (October 2019)

    Google Scholar 

  12. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211 (2013)

  13. Hastie, T.J.: Generalized additive models. In: Statistical models in S, pp. 249–307. Routledge (2017)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  15. Jiang, C.M., Sud, A., Makadia, A., Huang, J., Niessner, M., Funkhouser, T.: Local implicit grid representations for 3D scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6001–6010, June 2020

    Google Scholar 

  16. Landgraf, Z., Hornung, A.S., Cabral, R.S.: Pins: progressive implicit networks for multi-scale neural representations. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 11969–11984. PMLR, July 2022

    Google Scholar 

  17. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6498–6508, June 2021

    Google Scholar 

  18. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: Barf: Bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5741–5751, October 2021

    Google Scholar 

  19. Lindell, D.B., Van Veen, D., Park, J.J., Wetzstein, G.: Bacon: band-limited coordinate networks for multiscale scene representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16252–16262, June 2022

    Google Scholar 

  20. Martel, J.N.P., Lindell, D.B., Lin, C.Z., Chan, E.R., Monteiro, M., Wetzstein, G.: Acorn: adaptive coordinate networks for neural scene representation. ACM Trans. Graph. 40(4), 58:1-58:13 (2021)

    Article  Google Scholar 

  21. Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7210–7219, June 2021

    Google Scholar 

  22. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motivat. 24, 109–165 (1989)

    Article  Google Scholar 

  23. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker, M.: Modulated periodic activations for generalizable local functional representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14214–14223, October 2021

    Google Scholar 

  24. Mercat, A., Viitanen, M., Vanne, J.: UVG dataset: 50/120fps 4k sequences for video codec analysis and development. In: Proceedings of the 11th ACM Multimedia Systems Conference, MMSys, pp. 297–302. ACM, June 2020

    Google Scholar 

  25. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: Learning 3d reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4460–4470, June 2019

    Google Scholar 

  26. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  27. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1-102:15 (2022)

    Article  Google Scholar 

  28. Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11453–11464, June 2021

    Google Scholar 

  29. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174, June 2019

    Google Scholar 

  30. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, New York (1992)

    Google Scholar 

  31. Rahaman, N., et al.: On the spectral bias of neural networks. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 5301–5310. PMLR, June 2019

    Google Scholar 

  32. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: speeding up neural radiance fields with thousands of tiny MLPS. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14335–14345, October 2021

    Google Scholar 

  33. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  34. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: Ggnerative radiance fields for 3D-aware image synthesis. In: Advances in Neural Information Processing Systems, vol. 33, pp. 20154–20166. Curran Associates, Inc. (2020)

    Google Scholar 

  35. Shekarforoush, S., Lindell, D.B., Fleet, D.J., Brubaker, M.A.: Residual multiplicative filter networks for multiscale reconstruction. arXiv preprint arXiv:2206.00746 (2022)

  36. Sitzmann, V., Chan, E., Tucker, R., Snavely, N., Wetzstein, G.: MetaSDF: meta-learning signed distance functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 10136–10147. Curran Associates, Inc. (2020)

    Google Scholar 

  37. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473. Curran Associates, Inc. (2020)

    Google Scholar 

  38. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5459–5469, June 2022

    Google Scholar 

  39. Takikawa, T., et al.: Variable bitrate neural fields. arXiv preprint arXiv:2206.07707 (2022)

  40. Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11358–11367, June 2021

    Google Scholar 

  41. Tancik, M., et al.: Block-nerf: Scalable large scene neural view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8248–8258, June 2022

    Google Scholar 

  42. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547. Curran Associates, Inc. (2020)

    Google Scholar 

  43. Thrun, S.: A lifelong learning perspective for mobile robot control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 23–30. IEEE, October 1994

    Google Scholar 

  44. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  45. Wu, L., Liu, B., Stone, P., Liu, Q.: Firefly neural architecture descent: a general approach for growing neural networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 22373–22383. Curran Associates, Inc. (2020)

    Google Scholar 

  46. Wu, L., Wang, D., Liu, Q.: Splitting steepest descent for growing neural architectures. In: Advances in Neural Information Processing Systems, vol. 32, pp. 10655–10665. Curran Associates, Inc. (2019)

    Google Scholar 

  47. Xie, Y., et al.: Neural fields in visual computing and beyond. Comput. Graph. Forum 41(2), 641–676 (2022). https://neuralfields.cs.brown.edu/

    Article  Google Scholar 

  48. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5752–5761, October 2021

    Google Scholar 

  49. Yu, J., Huang, T.S.: Universally slimmable networks and improved training techniques. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1803–1811 (October 2019)

    Google Scholar 

  50. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  51. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

  52. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–595, June 2018

    Google Scholar 

  53. Zhong, E.D., Bepler, T., Davis, J.H., Berger, B.: Reconstructing continuous distributions of 3d protein structure from cryo-em images. In: International Conference on Learning Representations (2020)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and ICT (MSIT) of Korea, under the National Research Foundation (NRF) grant (2021R1F1A1061259), Institute of Information and Communication Technology Planning Evaluation (IITP) grants for the AI Graduate School program (IITP-2019-0-00421) and Artificial Intelligence Innovation Hub program (2021-0-02068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunbyung Park .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 14159 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, J., Nam, S., Rho, D., Ko, J.H., Park, E. (2022). Streamable Neural Fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20044-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20043-4

  • Online ISBN: 978-3-031-20044-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics