Skip to main content

Cross-Domain Cross-Set Few-Shot Learning via Learning Compact and Aligned Representations

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13680))

Included in the following conference series:

Abstract

Few-shot learning (FSL) aims to recognize novel queries with only a few support samples through leveraging prior knowledge from a base dataset. In this paper, we consider the domain shift problem in FSL and aim to address the domain gap between the support set and the query set. Different from previous cross-domain FSL work (CD-FSL) that considers the domain shift between base and novel classes, the new problem, termed cross-domain cross-set FSL (CDSC-FSL), requires few-shot learners not only to adapt to the new domain, but also to be consistent between different domains within each novel class. To this end, we propose a novel approach, namely stabPA, to learn prototypical compact and cross-domain aligned representations, so that the domain shift and few-shot learning can be addressed simultaneously. We evaluate our approach on two new CDCS-FSL benchmarks built from the DomainNet and Office-Home datasets respectively. Remarkably, our approach outperforms multiple elaborated baselines by a large margin, e.g., improving 5-shot accuracy by 6.0 points on average on DomainNet. Code is available at https://github.com/WentaoChen0813/CDCS-FSL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: International Conference on Machine Learning (2009)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  4. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: International Conference on Learning Representations (2019)

    Google Scholar 

  5. Chen, W., Si, C., Wang, W., Wang, L., Wang, Z., Tan, T.: Few-shot learning with part discovery and augmentation from unlabeled images. arXiv preprint arXiv:2105.11874 (2021)

  6. Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X.: Meta-baseline: Exploring simple meta-learning for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9062–9071 (2021)

    Google Scholar 

  7. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  8. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  10. Fu, Y., Fu, Y., Jiang, Y.G.: Meta-FDMixup: Cross-domain few-shot learning guided by labeled target data. In: ACMMM (2021)

    Google Scholar 

  11. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2130 (2016)

    MathSciNet  Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  13. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel method for the two-sample-problem. NeurIPS (2006)

    Google Scholar 

  14. Guan, J., Zhang, M., Lu, Z.: Large-scale cross-domain few-shot learning. In: ACCV (2020)

    Google Scholar 

  15. Guo, Y., et al.: A broader study of cross-domain few-shot learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 124–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_8

    Chapter  Google Scholar 

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  17. Hoffman, J., et al.: CyCADA: Cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)

    Google Scholar 

  18. Islam, A., Chen, C.F.R., Panda, R., Karlinsky, L., Feris, R., Radke, R.J.: Dynamic distillation network for cross-domain few-shot recognition with unlabeled data. Adv. Neural. Inf. Process. Syst. 34, 3584–3595 (2021)

    Google Scholar 

  19. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  20. Liang, H., Zhang, Q., Dai, P., Lu, J.: Boosting the generalization capability in cross-domain few-shot learning via noise-enhanced supervised autoencoder. In: ICCV (2021)

    Google Scholar 

  21. Long, M., CAO, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  22. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9(11) (2008)

    Google Scholar 

  23. Mangla, P., Kumari, N., Sinha, A., Singh, M., Krishnamurthy, B., Balasubramanian, V.N.: Charting the right manifold: Manifold mixup for few-shot learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2218–2227 (2020)

    Google Scholar 

  24. Panareda Busto, P., Gall, J.: Open set domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 754–763 (2017)

    Google Scholar 

  25. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  26. Phoo, C.P., Hariharan, B.: Self-training for few-shot transfer across extreme task differences. In: International Conference on Learning Representations (2021)

    Google Scholar 

  27. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting parameters from activations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7229–7238 (2018)

    Google Scholar 

  28. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  29. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  30. Saito, K., Kim, D., Sclaroff, S., Saenko, K.: Universal domain adaptation through self supervision. arXiv preprint arXiv:2002.07953 (2020)

  31. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 153–168 (2018)

    Google Scholar 

  32. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Guyon, I. (ed.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc, New York (2017)

    Google Scholar 

  33. Sohn, K., et al.: FixMatch: Simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  34. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  35. Tanwisuth, K., et al.: A prototype-oriented framework for unsupervised domain adaptation. In: NeurIPS (2021)

    Google Scholar 

  36. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  37. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  38. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  39. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classification via learned feature-wise transformation. In: ICLR (2020)

    Google Scholar 

  40. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  41. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  42. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. Adv. Neural. Inf. Process. Syst. 29, 3630–3638 (2016)

    Google Scholar 

  43. Wang, H., Deng, Z.H.: Cross-domain few-shot classification via adversarial task augmentation. In: IJCAI (2021)

    Google Scholar 

  44. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 5423–5432. PMLR (2018)

    Google Scholar 

  45. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2720–2729 (2019)

    Google Scholar 

  46. Zhang, C., Cai, Y., Lin, G., Shen, C.: DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  47. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12414–12424 (2021)

    Google Scholar 

  48. Zhang, Q., Zhang, J., Liu, W., Tao, D.: Category anchor-guided unsupervised domain adaptation for semantic segmentation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  49. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vis. 129(4), 1106–1120 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61721004, 61976214, 62076078, 62176246 and in part by the CAS-AIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 401 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, W., Zhang, Z., Wang, W., Wang, L., Wang, Z., Tan, T. (2022). Cross-Domain Cross-Set Few-Shot Learning via Learning Compact and Aligned Representations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20044-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20043-4

  • Online ISBN: 978-3-031-20044-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics