Abstract
The paper aims at a generalization of the Gauss–Weierstrass integral introduced by Eugeniusz Wachnicki two decades ago. It is intimately connected to a generalization of the heat equation. The main result is an asymptotic expansion for the operators when applied to a function belonging to a rather large class. An essential auxiliary result is a localization theorem which is interesting in itself.
Keywords
- Gauss–Weierstrass operator
- Bessel function
- Kummer function
- Asymptotic expansion
- Degree of approximation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abel, U.: A Voronovskaya type result for simultaneous approximation by Bernstein–Chlodovsky polynomials. Results Math. 74, Article number 117 (2019)
Abel, U.: Voronovskaja type theorems for positive linear operators related to squared fundamental functions. In: Draganov, B., Ivanov, K., Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2019, pp. 1–21. Prof. Marin Drinov Publishing House of Bas, Sofia (2020)
Abel, U., Ivan, M.: Simultaneous approximation by Altomare operators. Suppl. Rend. Circ. Mat. Palermo 82(2), 177–193 (2010)
Abel, U., Ivan, M.: Complete asymptotic expansions for Altomare operators. Mediterr. J. Math. 10, 17–29 (2013)
Abel, U., Karsli, H.: A complete asymptotic expansion for Bernstein-Chodovsky polynomials for functions on \(\mathbb {R}\). Mediterr. J. Math., 17, Article number 201 (2020)
Abel, U., Agratini, O., Păltănea, R.: A complete asymptotic expansion for the quasi-interpolants of Gauss–Weierstrass operators. Mediterr. J. Math. 15, Article number 156 (2018)
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. Tenth Printing (Issued, June 1964) (With corrections, December 1972)
Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and its Applications. de Gruyter Series Studies in Mathematics, vol. 17. Walter de Gruyter, Berlin/New York (1994)
Altomare, F., Milella, S.: Integral-type operators on continuous function spaces on the real line. J. Approx. Theory 152(2), 107–124 (2008)
Aral, A., Gal, S.G.: q-Generalizations of the Picard and Gauss–Weierstrass singular integrals. Taiwanese J. Math. 12(9), 2051–2515 (2008)
Bardaro, C., Mantellini, I., Uysal, G., Yilmaz, B.: A class of integral operators that fix exponential functions. Mediterr. J. Math. 18, Article number 179 (2021)
Bragg, L.R.: The radial heat polynomials and related functions. Trans. Am. Math. Soc. 119, 270–290 (1965)
Ifantis, E.K., Siafarikas, P.D.: Bounds for modified Bessel functions. Rend. Circ. Mat. Palermo II 40(3), 347–356 (1991)
Krech, G., Krech, I.: On some bivariate Gauss–Weierstrass operators. Constr. Math. Anal. 2(2), 57–63 (2019)
Luke, Y.L.: Inequalities for generalized hypergeometric functions. J. Approx. Theory, 5, 41–65 (1972)
NIST Digital Library of Mathematical Functions. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. https://dlmf.nist.gov
Rosenbloom, P., Widder, D. V.: Expansions in heat polynomials and associated functions. Trans. Am. Math. Soc. 92, 220–266 (1959)
Sikkema, P.C.: On some linear positive operators. Ind. Math. 32, 327–337 (1970)
Wachnicki, E.: On a Gauss–Weierstrass generalized integral. Rocznik Nauk.-Dydakt. Akad. Pedagogícznej W Krakow. Prace Mat. 17(2000), 251–263
Yilmaz, B.: Approximation properties of modified Gauss–Weierstrass integral operators in exponential weighted Lp spaces. Facta Univ. (Nis̆) Ser. Math. Inform. 36(1), 89–100 (2021)
Acknowledgements
The authors are grateful to the anonymous referee for valuable recommendations which led to several improvements of the manuscript. In particular, we thank for an additional reference.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Abel, U., Agratini, O. (2023). On Wachnicki’s Generalization of the Gauss–Weierstrass Integral. In: Candela, A.M., Cappelletti Montano, M., Mangino, E. (eds) Recent Advances in Mathematical Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-20021-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-20021-2_1
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-031-20020-5
Online ISBN: 978-3-031-20021-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)