Skip to main content

Learning Deterministic One-Clock Timed Automata via Mutation Testing

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13505)

Abstract

In active learning, an equivalence oracle is supposed to answer whether a hypothesis model is equivalent to the system under learning. Its implementation in real applications is considered a major bottleneck for active automata learning. The problem is especially difficult in the context of learning timed automata due to the infinitely large state space involved. In this paper, following the framework of combining mutation analysis and random testing, we propose an implementation of equivalence oracle in the context of learning deterministic one-clock timed automata (DOTAs). This includes two learning-friendly mutation operators, a heuristic test-case generation method, and a score-based test-case selection method. We implemented a prototype applying our approach by extending an existing tool on active learning of DOTAs and conducted extensive experiments. The results indicate that our method improves upon existing methods on the rate of learning correct models, the number of test cases required, and accumulated delay time in test cases.

Keywords

  • Active learning
  • Timed automata
  • Model-based mutation testing

This work has been partially funded by NSFC under grant No. 61972284, 62032019, 62032024, 62192732, 62192730, and 61625206, by DFG project 389792660-TRR 248.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Set \(w=1\) if no additional information is known.

References

  1. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F., Verwer, S.: Improving active Mealy machine learning for protocol conformance testing. Mach. Learn. 96, 189–224 (2013). https://doi.org/10.1007/s10994-013-5405-0

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Aichernig, B.K., et al.: Model-based mutation testing of an industrial measurement device. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09099-3_1

    CrossRef  Google Scholar 

  3. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing strategies for model-based mutation testing. Softw. Test. Verification Reliab. 25(8), 716–748 (2015). https://doi.org/10.1002/stvr.1522

    CrossRef  Google Scholar 

  4. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants—model-based mutation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38916-0_2

    CrossRef  Google Scholar 

  5. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_1

    CrossRef  Google Scholar 

  6. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation testing. J. Autom. Reason. 63(4), 1103–1134 (2018). https://doi.org/10.1007/s10817-018-9486-0

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata. In: TACAS 2020. LNCS, vol. 12078, pp. 444–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_25

    CrossRef  Google Scholar 

  9. An, J., Wang, L., Zhan, B., Zhan, N., Zhang, M.: Learning real-time automata. Sci. China Inf. Sci. 64(9), 1–17 (2021). https://doi.org/10.1007/s11432-019-2767-4

    CrossRef  MathSciNet  Google Scholar 

  10. An, J., Zhan, B., Zhan, N., Zhang, M.: Learning nondeterministic real-time automata. ACM Trans. Embed. Comput. Syst. 20(5s), 1–26 (2021). https://doi.org/10.1145/3477030

    CrossRef  Google Scholar 

  11. Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using mutation analysis for assessing and comparing testing coverage criteria. IEEE Trans. Software Eng. 32(8), 608–624 (2006). https://doi.org/10.1109/TSE.2006.83

    CrossRef  Google Scholar 

  12. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9_14

    CrossRef  Google Scholar 

  14. Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans. Software Eng. 3, 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

    CrossRef  MATH  Google Scholar 

  15. En-Nouaary, A., Dssouli, R., Khendek, F.: Timed Wp-method: Testing real-time systems. IEEE Trans. Software Eng. 28(11), 1023–1038 (2002). https://doi.org/10.1109/TSE.2002.1049402

    CrossRef  Google Scholar 

  16. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. Theoret. Comput. Sci. 411(47), 4029–4054 (2010). https://doi.org/10.1016/j.tcs.2010.07.008

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Henry, L., Jéron, T., Markey, N.: Active learning of timed automata with unobservable resets. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 144–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_9

    CrossRef  MATH  Google Scholar 

  18. Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box techniques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_26

    CrossRef  MATH  Google Scholar 

  19. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_55

    CrossRef  Google Scholar 

  20. Isberner, M., Howar, F., Steffen, B.: The open-source learnlib. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_32

    CrossRef  Google Scholar 

  21. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/TSE.2010.62

    CrossRef  Google Scholar 

  22. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods Syst. Des. 34(3), 238–304 (2009). https://doi.org/10.1007/s10703-009-0065-1

    CrossRef  MATH  Google Scholar 

  23. Larsen, K.G., Lorber, F., Nielsen, B., Nyman, U.: Mutation-based test-case generation with Ecdar. In: ICST Workshops 2017, pp. 319–328. IEEE (2017). https://doi.org/10.1109/ICSTW.2017.60

  24. Maler, O., Mens, I.-E.: Learning regular languages over large alphabets. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 485–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_41

    CrossRef  Google Scholar 

  25. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang. Comb. 7(2), 225–246 (2002). https://doi.org/10.25596/jalc-2002-225

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Trab, M.S.A., Counsell, S., Hierons, R.M.: Specification mutation analysis for validating timed testing approaches based on timed automata. In: COMPSAC 2012, pp. 660–669. IEEE Computer Society (2012). https://doi.org/10.1109/COMPSAC.2012.93

  27. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012). https://doi.org/10.1002/stvr.456

    CrossRef  Google Scholar 

  28. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://doi.org/10.1145/2967606

    CrossRef  Google Scholar 

  29. Vaandrager, F., Bloem, R., Ebrahimi, M.: Learning mealy machines with one timer. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 157–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68195-1_13

    CrossRef  Google Scholar 

  30. Van Beek, D., Man, K., Reniers, M., Rooda, J., Schiffelers, R.: Syntax and semantics of timed Chi. J. Symb. Comput. JSC (2005)

    Google Scholar 

  31. Vega, J.J.O., Perrouin, G., Amrani, M., Schobbens, P.: Model-based mutation operators for timed systems: a taxonomy and research agenda. In: QRS 2018, pp. 325–332. IEEE (2018). https://doi.org/10.1109/QRS.2018.00045

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaomiao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, X., Shen, W., Zhang, M., An, J., Zhan, B., Zhan, N. (2022). Learning Deterministic One-Clock Timed Automata via Mutation Testing. In: Bouajjani, A., Holík, L., Wu, Z. (eds) Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes in Computer Science, vol 13505. Springer, Cham. https://doi.org/10.1007/978-3-031-19992-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19992-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19991-2

  • Online ISBN: 978-3-031-19992-9

  • eBook Packages: Computer ScienceComputer Science (R0)