Skip to main content

Projected Model Counting: Beyond Independent Support

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13505))

Abstract

Given a system of constraints over a set X of variables, projected model counting asks us to count satisfying assignments of the constraint system projected on a subset \(\mathcal {P}\) of X. A key idea used in modern projected counters is to first compute an independent support, say \(\mathcal {I}\), that is often a small subset of \(\mathcal {P}\), and to then count models projected on \(\mathcal {I}\) instead of on \(\mathcal {P}\). While this has been effective in scaling performance of counters, the question of whether we can benefit by projecting on variables beyond \(\mathcal {P}\) has not been explored. In this paper, we study this question and show that contrary to intuition, it can be beneficial to project on variables even beyond \(\mathcal {P}\). In several applications, a good upper bound of the projected model count often suffices. We show that in several such cases, we can identify a set of variables, called upper bound support (UBS), that is not necessarily a subset of \(\mathcal {P}\), and yet counting models projected on UBS guarantees an upper bound of the projected model count. Theoretically, a UBS can be exponentially smaller than the smallest independent support. Our experiments show that even otherwise, UBS-based projected counting can be faster than independent support-based projected counting, while yielding bounds of high quality. Based on extensive experiments, we find that UBS-based projected counting can solve many problem instances that are beyond the reach of a state-of-the-art independent support-based projected model counter.

The resulting tool is available open-source at https://github.com/meelgroup/arjun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A special case where \(\mathcal {P} = X\) is known to be #P-complete [34].

  2. 2.

    The problem of partition function estimation is known to be #P-complete and reduces to model counting; the state of the art techniques for partition function estimates are based on model counting [10].

  3. 3.

    Projection set has also been referred to as sampling set in prior work [8, 27].

  4. 4.

    The tool is available open-source at https://github.com/meelgroup/arjun.

  5. 5.

    The ApproxMC4-based entry achieved 3rd place in the 2021 competition, with the tolerance for error (\(\varepsilon \)) set to 0.01. As mentioned during the competitive event presentation at the SAT 2021 conference, had \(\varepsilon \) been set to 0.05, the ApproxMC4-based entry would have indeed won the competition.

  6. 6.

    http://www.qbflib.org/qbfeval17.php.

  7. 7.

    http://www.qbflib.org/qbfeval18.php.

References

  1. Achlioptas, D., Theodoropoulos, P.: Probabilistic model counting with short XORs. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_1

    Chapter  Google Scholar 

  2. Agrawal, D., Pote, Y., Meel, K.S.: Partition function estimation: a quantitative study. In: Proceedings of IJCAI (2021)

    Google Scholar 

  3. Akshay, S., Chakraborty, S., John, A.K., Shah, S.: Towards parallel Boolean functional synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 337–353. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_19

    Chapter  Google Scholar 

  4. Baluta, T., Shen, S., Shine, S., Meel, K.S., Saxena, P.: Quantitative verification of neural networks and its security applications. In: Proceedings of CCS (2019)

    Google Scholar 

  5. Biondi, F., Enescu, M.A., Heuser, A., Legay, A., Meel, K.S., Quilbeuf, J.: Scalable approximation of quantitative information flow in programs. In: Dillig, I., Palsberg, J. (eds.) VMCAI 2018. LNCS, vol. 10747, pp. 71–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8_4

    Chapter  Google Scholar 

  6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 608–623. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_40

    Chapter  Google Scholar 

  7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_18

    Chapter  Google Scholar 

  8. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in SAT-witness generator. In: Proceedings of DAC, pp. 60:1–60:6 (2014)

    Google Scholar 

  9. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approximate counting for probabilistic inference: from linear to logarithmic SAT calls. In: Proceedings of IJCAI (2016)

    Google Scholar 

  10. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In: IJCAI, vol. 5, pp. 1306–1312 (2005)

    Google Scholar 

  11. Duenas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability estimation for power-transmission grids. In: Proceedings of AAAI (2017)

    Google Scholar 

  12. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Low-density parity constraints for hashing-based discrete integration. In: Proceedings of ICML (2014)

    Google Scholar 

  13. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Taming the curse of dimensionality: discrete integration by hashing and optimization. In: Proceedings of ICML (2013)

    Google Scholar 

  14. Fichte, J.K., Hecher, M., Hamiti, F.: The model counting competition 2020. arXiv preprint arXiv:2012.01323 (2020)

  15. Golia, P., Roy, S., Meel, K.S.: Manthan: a data-driven approach for Boolean function synthesis. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 611–633. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_31

    Chapter  Google Scholar 

  16. Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: Short XORs for model counting: from theory to practice. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 100–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72788-0_13

    Chapter  MATH  Google Scholar 

  17. Gomes, C., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model counting, pp. 2293–2299 (2007)

    Google Scholar 

  18. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtaining good bounds. In: Proceedings of AAAI (2006)

    Google Scholar 

  19. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent support and its applications to sampling and counting. Constraints 21(1) (2016)

    Google Scholar 

  20. Kroc, L., Sabharwal, A., Selman, B.: Leveraging belief propagation, backtrack search, and statistics for model counting. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 127–141. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68155-7_12

    Chapter  MATH  Google Scholar 

  21. Lagniez, J.M., Lonca, E., Marquis, P.: Improving model counting by leveraging definability. In: IJCAI, pp. 751–757 (2016)

    Google Scholar 

  22. Lagniez, J.M., Lonca, E., Marquis, P.: Definability for model counting. Artif. Intell. 281, 103229 (2020)

    Google Scholar 

  23. Meel, K.S., Akshay, S.: Sparse hashing for scalable approximate model counting: theory and practice. In: Proceedings of LICS (2020)

    Google Scholar 

  24. Padoa, A.: Essai d’une théorie algébrique des nombres entiers, précédé d’une introduction logique á une théorie déductive quelconque. Bibliothèque du Congrès International de Philosophie 3, 309 (1901)

    Google Scholar 

  25. Sang, T., Bearne, P., Kautz, H.: Performing Bayesian inference by weighted model counting. In: Proceedings of AAAI, AAAI 2005, vol. 1, pp. 475–481 (2005)

    Google Scholar 

  26. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: a scalable probabilistic exact model counter. In: IJCAI, vol. 19, pp. 1169–1176 (2019)

    Google Scholar 

  27. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_22

    Chapter  Google Scholar 

  28. Soos, M., Meel, K.S.: Bird: engineering an efficient CNF-XOR sat solver and its applications to approximate model counting. In: Proceedings of AAAI (2019)

    Google Scholar 

  29. Soos, M., Meel, K.S.: Arjun: an efficient independent support computation technique and its applications to counting and sampling. arXiv preprint arXiv:2110.09026 (2021)

  30. Stockmeyer, L.: The complexity of approximate counting. In: Proceedings of STOC (1983)

    Google Scholar 

  31. Tabajara, L.M., Vardi, M.Y.: Factored Boolean functional synthesis. In: Proceedings of FMCAD, FMCAD 2017, pp. 124–131 (2017)

    Google Scholar 

  32. Teuber, S., Weigl, A.: Quantifying software reliability via model-counting. In: Abate, A., Marin, A. (eds.) QEST 2021. LNCS, vol. 12846, pp. 59–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85172-9_4

    Chapter  Google Scholar 

  33. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  34. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MathSciNet  Google Scholar 

  35. Yang, J., Chakraborty, S., Meel, K.S.: Projected model counting: beyond independent support. arXiv preprint arXiv:2110.09171 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Chakraborty, S., Meel, K.S. (2022). Projected Model Counting: Beyond Independent Support. In: Bouajjani, A., Holík, L., Wu, Z. (eds) Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes in Computer Science, vol 13505. Springer, Cham. https://doi.org/10.1007/978-3-031-19992-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19992-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19991-2

  • Online ISBN: 978-3-031-19992-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics