Abstract
The resource constrained multi-project scheduling problem (RCMPSP) is a well-known NP-hard problem. In this study, a surrogate-assisted genetic algorithm (SaGA) is presented for solving the RCMPSP. A non-random initialization starts the SaGA with a certain diversity and quality. A forward-backward improvement (FBI) based local search is utilized to intensify high quality solutions. Surrogation in genetic algorithm (GA) estimates few individual’s fitness rather than determining the actual fitness value. It maintains population’s diversity while optimizing the solution of the GA in the meantime. The performance of the proposed SaGA is examined on standard 10 benchmark examples ranging from 2 to 5 projects in a multi-project set. The comparative computational results with the state-of-the-art algorithms show the effectiveness of the proposed SaGA to achieve a lower value of projects total makespan (TMS).
Keywords
- Surrogate-assisted genetic algorithm
- Multi-project scheduling
- Local and global resource constraint
- Total makespan
This is a preview of subscription content, access via your institution.
Buying options

References
Adhau, S., Mittal, M.L., Mittal, A.: A multi-agent system for distributed multi-project scheduling: an auction-based negotiation approach. Eng. Appl. Artif. Intell. 25(8), 1738–1751 (2012)
Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: An immune genetic algorithm for solving npv-based resource constrained project scheduling problem. IEEE Access 9, 26177–26195 (2021)
Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: A memetic algorithm for concurrent project scheduling, materials ordering and suppliers selection problem. Procedia Comput. Sci. 192, 717–726 (2021)
Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: Resource constrained project scheduling and material ordering problem with discounted cash flows. Comput. Ind. Eng. 158, 107427 (2021)
Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: Multi-operator immune genetic algorithm for project scheduling with discounted cash flows. Expert Syst. Appl. 195, 116589 (2022)
Chen, M., Wen, J., Song, Y.J., Xing, L.N., Chen, Y.W.: A population perturbation and elimination strategy based genetic algorithm for multi-satellite tt &c scheduling problem. Swarm Evol. Comput. 65, 100912 (2021)
Chen, P.H., Shahandashti, S.M.: Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints. Autom. Constr. 18(4), 434–443 (2009)
Gonçalves, J.F., Mendes, J.J., Resende, M.G.: A genetic algorithm for the resource constrained multi-project scheduling problem. Eur. J. Oper. Res. 189(3), 1171–1190 (2008)
Homberger, J.: A multi-agent system for the decentralized resource-constrained multi-project scheduling problem. Int. Trans. Oper. Res. 14(6), 565–589 (2007)
Homberger, J.: A (\(\mu \), \(\lambda \))-coordination mechanism for agent-based multi-project scheduling. OR Spect. 34(1), 107–132 (2012)
Li, F., Xu, Z.: A multi-agent system for distributed multi-project scheduling with two-stage decomposition. PloS One 13(10), e0205445 (2018)
Liu, D., Xu, Z., Li, F.: A three-stage decomposition algorithm for decentralized multi-project scheduling under uncertainty. Comput. Ind. Eng. 160, 107553 (2021)
Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: Memetic algorithm for solving resource constrained project scheduling problems. Autom. Constr. 111, 103052 (2020)
Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop scheduling problem. Omega 34(5), 461–476 (2006)
Sonmez, R., Uysal, F.: Backward-forward hybrid genetic algorithm for resource-constrained multiproject scheduling problem. J. Comput. Civil Eng. 29(5), 04014072 (2015)
Souza, R.L.C., Ghasemi, A., Saif, A., Gharaei, A.: Robust job-shop scheduling under deterministic and stochastic unavailability constraints due to preventive and corrective maintenance. Comput. Ind. Eng. 168, 108130 (2022)
Turner, J.R.: The Handbook of Project-Based Management. The McGraw-Hill Companies, Inc. (2009)
Villafáñez, F., Poza, D., López-Paredes, A., Pajares, J., Olmo, R.D.: A generic heuristic for multi-project scheduling problems with global and local resource constraints (rcmpsp). Soft Comput. 23(10), 3465–3479 (2019)
Wang, Y., He, Z., Kerkhove, L.P., Vanhoucke, M.: On the performance of priority rules for the stochastic resource constrained multi-project scheduling problem. Comput. Ind. Eng. 114, 223–234 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J. (2023). Surrogate-assisted Genetic Algorithm for Multi-project Scheduling. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-19958-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19957-8
Online ISBN: 978-3-031-19958-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)