Skip to main content

Surrogate-assisted Genetic Algorithm for Multi-project Scheduling

  • 338 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 569)

Abstract

The resource constrained multi-project scheduling problem (RCMPSP) is a well-known NP-hard problem. In this study, a surrogate-assisted genetic algorithm (SaGA) is presented for solving the RCMPSP. A non-random initialization starts the SaGA with a certain diversity and quality. A forward-backward improvement (FBI) based local search is utilized to intensify high quality solutions. Surrogation in genetic algorithm (GA) estimates few individual’s fitness rather than determining the actual fitness value. It maintains population’s diversity while optimizing the solution of the GA in the meantime. The performance of the proposed SaGA is examined on standard 10 benchmark examples ranging from 2 to 5 projects in a multi-project set. The comparative computational results with the state-of-the-art algorithms show the effectiveness of the proposed SaGA to achieve a lower value of projects total makespan (TMS).

Keywords

  • Surrogate-assisted genetic algorithm
  • Multi-project scheduling
  • Local and global resource constraint
  • Total makespan

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-19958-5_9
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-19958-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Adhau, S., Mittal, M.L., Mittal, A.: A multi-agent system for distributed multi-project scheduling: an auction-based negotiation approach. Eng. Appl. Artif. Intell. 25(8), 1738–1751 (2012)

    CrossRef  Google Scholar 

  2. Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: An immune genetic algorithm for solving npv-based resource constrained project scheduling problem. IEEE Access 9, 26177–26195 (2021)

    CrossRef  Google Scholar 

  3. Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: A memetic algorithm for concurrent project scheduling, materials ordering and suppliers selection problem. Procedia Comput. Sci. 192, 717–726 (2021)

    CrossRef  Google Scholar 

  4. Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: Resource constrained project scheduling and material ordering problem with discounted cash flows. Comput. Ind. Eng. 158, 107427 (2021)

    CrossRef  Google Scholar 

  5. Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: Multi-operator immune genetic algorithm for project scheduling with discounted cash flows. Expert Syst. Appl. 195, 116589 (2022)

    CrossRef  Google Scholar 

  6. Chen, M., Wen, J., Song, Y.J., Xing, L.N., Chen, Y.W.: A population perturbation and elimination strategy based genetic algorithm for multi-satellite tt &c scheduling problem. Swarm Evol. Comput. 65, 100912 (2021)

    CrossRef  Google Scholar 

  7. Chen, P.H., Shahandashti, S.M.: Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints. Autom. Constr. 18(4), 434–443 (2009)

    CrossRef  Google Scholar 

  8. Gonçalves, J.F., Mendes, J.J., Resende, M.G.: A genetic algorithm for the resource constrained multi-project scheduling problem. Eur. J. Oper. Res. 189(3), 1171–1190 (2008)

    CrossRef  Google Scholar 

  9. Homberger, J.: A multi-agent system for the decentralized resource-constrained multi-project scheduling problem. Int. Trans. Oper. Res. 14(6), 565–589 (2007)

    CrossRef  Google Scholar 

  10. Homberger, J.: A (\(\mu \), \(\lambda \))-coordination mechanism for agent-based multi-project scheduling. OR Spect. 34(1), 107–132 (2012)

    CrossRef  MathSciNet  Google Scholar 

  11. Li, F., Xu, Z.: A multi-agent system for distributed multi-project scheduling with two-stage decomposition. PloS One 13(10), e0205445 (2018)

    CrossRef  Google Scholar 

  12. Liu, D., Xu, Z., Li, F.: A three-stage decomposition algorithm for decentralized multi-project scheduling under uncertainty. Comput. Ind. Eng. 160, 107553 (2021)

    CrossRef  Google Scholar 

  13. Rahman, H.F., Chakrabortty, R.K., Ryan, M.J.: Memetic algorithm for solving resource constrained project scheduling problems. Autom. Constr. 111, 103052 (2020)

    CrossRef  Google Scholar 

  14. Ruiz, R., Maroto, C., Alcaraz, J.: Two new robust genetic algorithms for the flowshop scheduling problem. Omega 34(5), 461–476 (2006)

    CrossRef  Google Scholar 

  15. Sonmez, R., Uysal, F.: Backward-forward hybrid genetic algorithm for resource-constrained multiproject scheduling problem. J. Comput. Civil Eng. 29(5), 04014072 (2015)

    CrossRef  Google Scholar 

  16. Souza, R.L.C., Ghasemi, A., Saif, A., Gharaei, A.: Robust job-shop scheduling under deterministic and stochastic unavailability constraints due to preventive and corrective maintenance. Comput. Ind. Eng. 168, 108130 (2022)

    CrossRef  Google Scholar 

  17. Turner, J.R.: The Handbook of Project-Based Management. The McGraw-Hill Companies, Inc. (2009)

    Google Scholar 

  18. Villafáñez, F., Poza, D., López-Paredes, A., Pajares, J., Olmo, R.D.: A generic heuristic for multi-project scheduling problems with global and local resource constraints (rcmpsp). Soft Comput. 23(10), 3465–3479 (2019)

    Google Scholar 

  19. Wang, Y., He, Z., Kerkhove, L.P., Vanhoucke, M.: On the performance of priority rules for the stochastic resource constrained multi-project scheduling problem. Comput. Ind. Eng. 114, 223–234 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Asadujjaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J. (2023). Surrogate-assisted Genetic Algorithm for Multi-project Scheduling. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_9

Download citation