Skip to main content

A Heuristic for Short Homology Basis of Digital Objects

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)


Finding the minimum homology basis of a simplicial complex is a hard problem unless one only considers the first homology group. In this paper, we introduce a general heuristic for finding a short homology basis of any dimension for digital objects (that is, for their associated cubical complexes) with complexity \(\mathcal {O}(m^3 + \beta _q \cdot n^3)\), where m is the size of the bounding box of the object, n is the size of the object and \(\beta _q\) is the rank of its qth homology group. Our heuristic makes use of the thickness-breadth balls, a tool for visualizing and locating holes in digital objects.

We evaluate our algorithm with a data set of 3D digital objects and compare it with an adaptation of the best current algorithm for computing the minimum radius homology basis by Dey, Li and Wang [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. DGtal: Digital geometry tools and algorithms library.

  2. Bauer, U., Kerber, M., Reininghaus, J.: Clear and compress: computing persistent homology in chunks. In: Bremer, P.-T., Hotz, I., Pascucci, V., Peikert, R. (eds.) Topological Methods in Data Analysis and Visualization III. MV, pp. 103–117. Springer, Cham (2014).

    Chapter  MATH  Google Scholar 

  3. Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: PHAT - persistent homology algorithms toolbox. J. Symb. Comput. 78, 76–90 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. Boissonnat, J., Dey, T.K., Maria, C.: The compressed annotation matrix: an efficient data structure for computing persistent cohomology. Algorithmica 73(3), 607–619 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. Busaryev, O., Cabello, S., Chen, C., Dey, T.K., Wang, Y.: Annotating simplices with a homology basis and its applications. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 189–200. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  6. Busaryev, O., Dey, T.K., Wang, Y.: Homology annotations via matrix reduction. Technical report, OSU-CISRC-4/12-TR04, Department of Computer Science and Engineering, the Ohio State University (2012).

  7. Chen, C., Freedman, D.: Measuring and computing natural generators for homology groups. Comput. Geom. 43(2), 169–181 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C., Freedman, D.: Hardness results for homology localization. Discret. Comput. Geom. 45(3), 425–448 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–257 (2004).

    Article  Google Scholar 

  10. Dey, T.K., Li, T., Wang, Y.: Efficient algorithms for computing a minimal homology basis. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 376–398. Springer, Cham (2018).

    Chapter  Google Scholar 

  11. Dey, T.K., Sun, J., Wang, Y.: Approximating loops in a shortest homology basis from point data. In: Proceedings of the 26th ACM Symposium on Computational Geometry, Snowbird, Utah, USA, 13–16 June 2010, pp. 166–175 (2010).

  12. Edelsbrunner, H., Harer, J.: Computational Topology - An Introduction. American Mathematical Society (2010)

    Google Scholar 

  13. Emmett, K.J., Schweinhart, B., Rabadan, R.: Multiscale topology of chromatin folding. In: Suzuki, J., Nakano, T., Hess, H. (eds.) Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), BICT 2015, New York City, USA, 3–5 December 2015, pp. 177–180. ICST/ACM (2015).

  14. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, 23–25 January 2005, pp. 1038–1046 (2005).

  15. Escolar, E.G., Hiraoka, Y.: Optimal cycles for persistent homology via linear programming. In: Fujisawa, K., Shinano, Y., Waki, H. (eds.) Optimization in the Real World. MI, vol. 13, pp. 79–96. Springer, Tokyo (2016).

    Chapter  Google Scholar 

  16. Gonzalez-Lorenzo, A., Bac, A., Mari, J.-L., Real, P.: Two measures for the homology groups of binary volumes. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 154–165. Springer, Cham (2016).

    Chapter  MATH  Google Scholar 

  17. Gonzalez-Lorenzo, A., Bac, A., Mari, J.L., Real, P.: Allowing cycles in discrete Morse theory. Topol. Appl. 228, 1–35 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, vol. 157, chap. 2, 7, pp. 255–258. Springer, Heidelberg (2004)

    Google Scholar 

  19. Milosavljevic, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the 27th ACM Symposium on Computational Geometry, Paris, France, 13–15 June 2011, pp. 216–225 (2011).

  20. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley (1984)

    Google Scholar 

  21. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017).

    Article  Google Scholar 

  22. Rathod, A.: Fast algorithms for minimum cycle basis and minimum homology basis. In: Cabello, S., Chen, D.Z. (eds.) 36th International Symposium on Computational Geometry, SoCG 2020, Zürich, Switzerland, 23–26 June 2020. LIPIcs, vol. 164, pp. 64:1–64:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).

  23. Zhang, X., Wu, P., Yuan, C., Wang, Y., Metaxas, D.N., Chen, C.: Heuristic search for homology localization problem and its application in cardiac trabeculae reconstruction. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 1312–1318. (2019).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Aldo Gonzalez-Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzalez-Lorenzo, A., Bac, A., Mari, JL. (2022). A Heuristic for Short Homology Basis of Digital Objects. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics